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Support Vector Machines

e Find a linear hyperplane (decision boundary) that will separate the data
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Support Vector Machines
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e One Possible Solution
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Support Vector Machines
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e Another possible solution
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Support Vector Machines
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e Other possible solutions
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Support Vector Machines
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e Which one is better? B1 or B2?
e How do you define better?
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Support Vector Machines
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e Find hyperplane maximizes the margin => B1 is better than B2
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Support Vector Machines

WeX+b=x+1
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Linear SVM

e Linear model:
r 1 ifwex+b>1
f(x)=

1 ifwex+h<-—1

e Learning the model is equivalent to determining
the values of wand b

— How to find wand b from training data?
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Learning Linear SVM

2

e Objective Is to maximize: Margin = m
W
oy lIwf
— Which is equivalent to minimizing: L(w) =

— Subject to the following constraints:
(1 ifwex +b>1
'T11 ifWex +b<-1
o yi(wex;+b)=1 1=12,.,N

¢ This Is a constrained optimization problem
— Solve it using Lagrange multiplier method
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Example of Linear SVM

Support vectors

—

X1 | X2 D

0.3858| 0.468/

N AQ71 N A11
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Learning Linear SVM

e Decision boundary depends only on support
vectors

— If you have data set with same support
vectors, decision boundary will not change

— How to classify using SVM once w and b are
found? Given a test record, X;

s

r (1 ifwex +h>1
f(Xi): e[
-1 ifweX +b<-1
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Support Vector Machines

e What if the problem is not linearly separable?
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Support Vector Machines

e What if the problem is not linearly separable?
— Introduce slack variables

¢ Need to minimize: [ 2 N
W
” ” | C( kj

L(w) = Zé:i
+ Subject to: =

(1 ifwex +bXT-&
71 ifWek +b<Clr o)

¢ If kis 1 or 2, this leads to same objective function
as linear SVM but with different constraints (see
textbook)

02/14/2018 Introduction to Data Mining, 29 Edition 14



Support Vector Machines
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e Find the hyperplane that optimizes both factors
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Nonlinear Support Vector Machines

e What if decision boundary is not linear?
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Nonlinear Support Vector Machines

e Trick: Transform data into higher dimensional

space
0 .
O o 2 i
005} O ] .I"'f — T + .I"-E — I'2 = —0.46.
nl
01 O O ) | R - 5
N = D (ry.r9) — (27,25, V2r, V219, 1),
X 018 L
N><N B B
u wyrs + wars + weyv'2ry + w2y + wg = 0.
02t O Ol i 2
o0
025} O O ..
Decision boundary:

025 02 Xf—,;gjf} 01 0.05 0 \;V ° (I)()I() + b — O
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Learning Nonlinear SVM

e Optimization problem:

min ”W”E
w 2
subject to yi(w- P(m) +b) = 1, (. us)]}

e Which leads to the same set of equations (but
Involve ®(X) instead of x)

n
]. i 9 | "y F— 5 5 i .m.
Lp=7) 1 A= 5 D AU k) R(x) WS Zﬂ_ At P)
1= L

Ai{wi(D - Njus®(x;) - B(x) +b) — 1} =0,
7

T
flz) =stgn(w -®(z)+b) = .e-s'_a_’,ru{z AP - B(z2) 4+ b).

i=1
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Learning NonLinear SVM

e |ssues:

— What type of mapping function ® should be
used?

— How to do the computation in high
dimensional space?
¢ Most computations involve dot product ®(x;)e @(x;)
¢ Curse of dimensionality?
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Learning Nonlinear SVM

e Kernel Trick:
— D(x;)e O(x) = K(X;, X))

— K(x;; X;) is a kernel function (expressed in terms of the
coordinates in the original space

.
_ ==

{ | \ Gaussian RBF Kernel K (%, i‘) —e 207

) f Sigmoid Kernel K(X,Y) = tanh(y - XTY + 1)

Polynomial Kernel KX,Y)=W - XTY +r)4y>0

02/14/2018 Introduction to Data Mining, 29 Edition

20



Gaussian RBF Kernel

n 2D Space
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Example of Nonlinear SVM
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SVM with polynomial
degree 2 kernel
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K(%1') + K(%,1?)

(Simplified Formula)

+ Green when:

* oK M) +K(%,12) >0
+ . Red when:

+ Y KED)+K(E1P)=0

+

>
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Learning Nonlinear SVM

e Advantages of using kernel:
— Don’t have to know the mapping function ®

— Computing dot product ®(x;)e ®(x;) in the
original space avoids curse of dimensionality

e Not all functions can be kernels

— Must make sure there is a corresponding @ In
some high-dimensional space

— Mercer’s theorem (see textbook)
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Characteristics of SVM

e Since the learning problem is formulated as a convex
optimization problem, efficient algorithms are available to
find the global minima of the objective function (many of
the other methods use greedy approaches and find locally
optimal solutions)

e Overfitting Is addressed by maximizing the margin of the
decision boundary, but the user still needs to provide the
type of kernel function and cost function

e Difficult to handle missing values
e Robust to noise

e High computational complexity for building the model
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