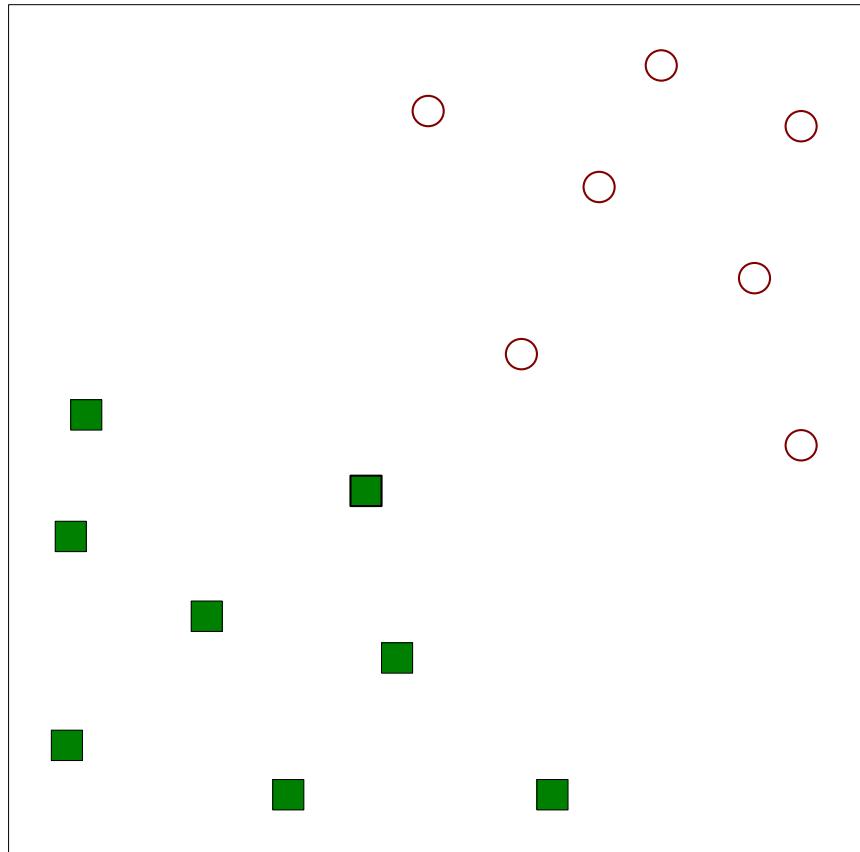


Data Mining

Support Vector Machines

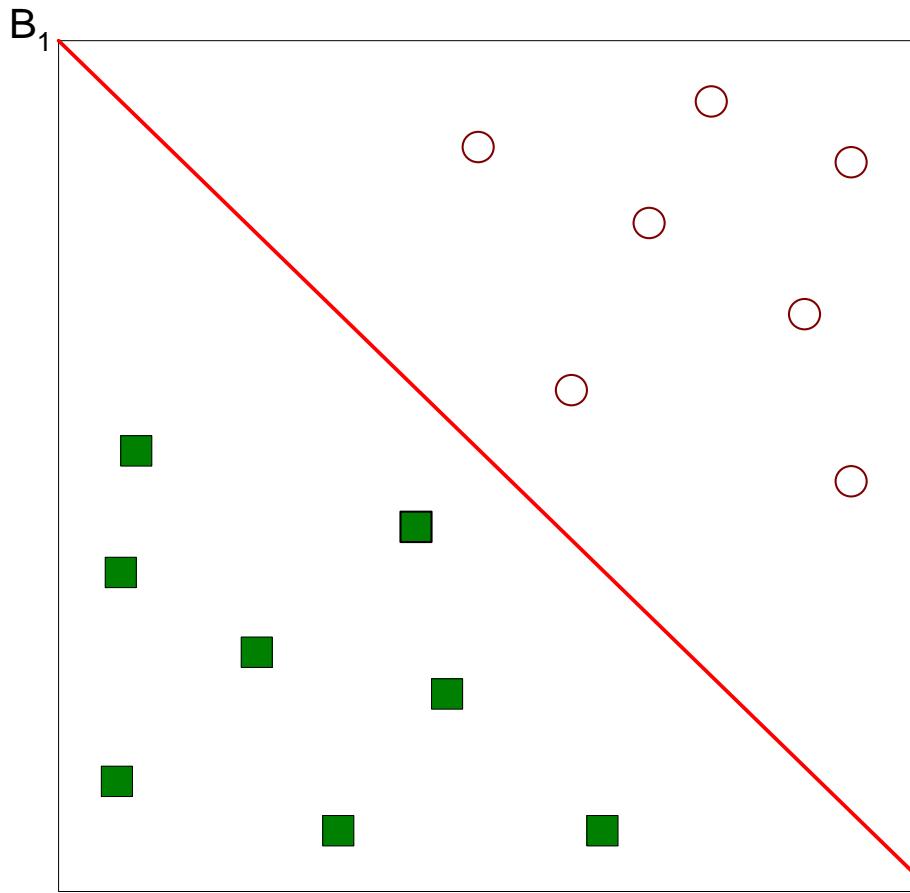
Introduction to Data Mining, 2nd Edition
by
Tan, Steinbach, Karpatne, Kumar

Support Vector Machines



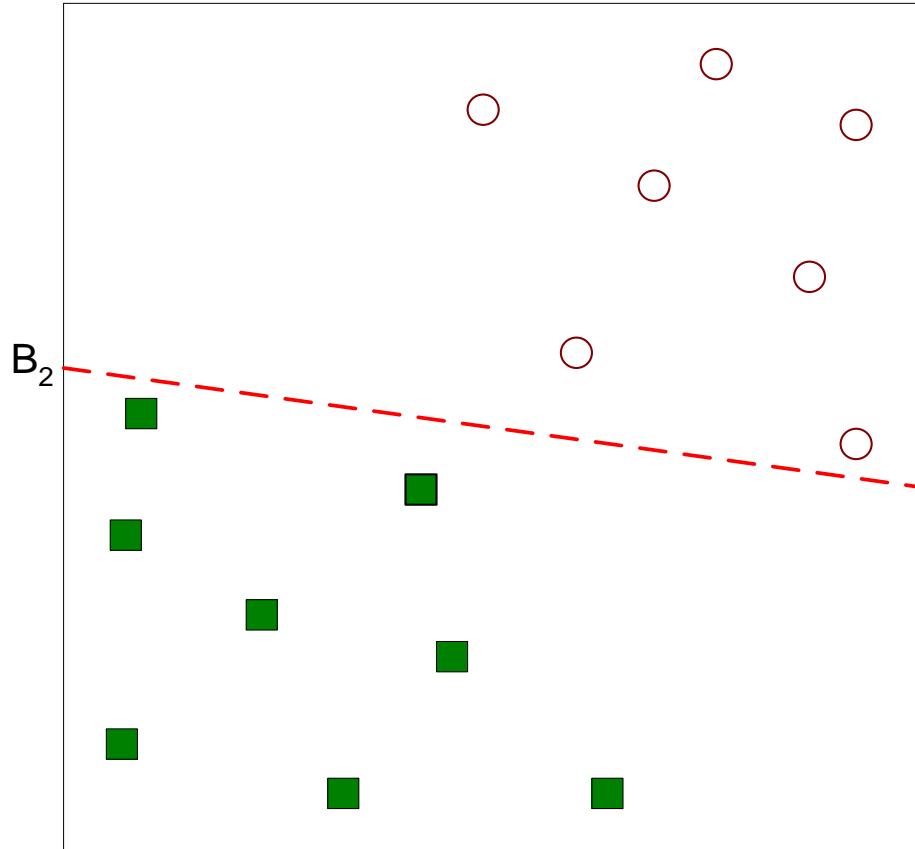
- Find a linear hyperplane (decision boundary) that will separate the data

Support Vector Machines



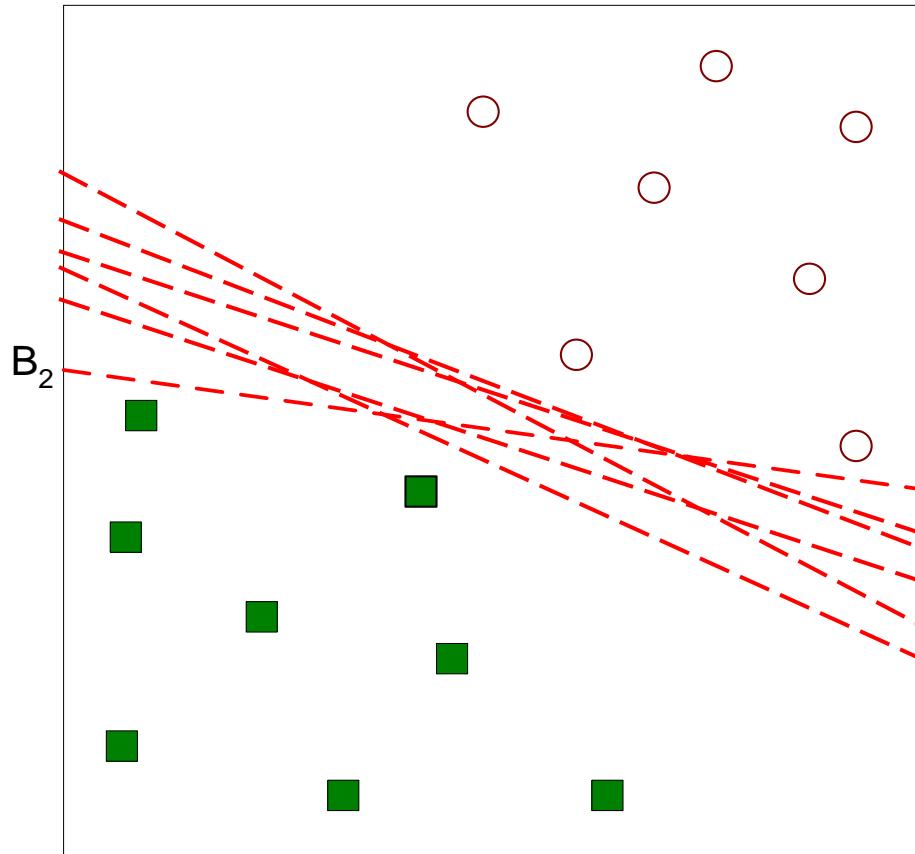
- One Possible Solution

Support Vector Machines



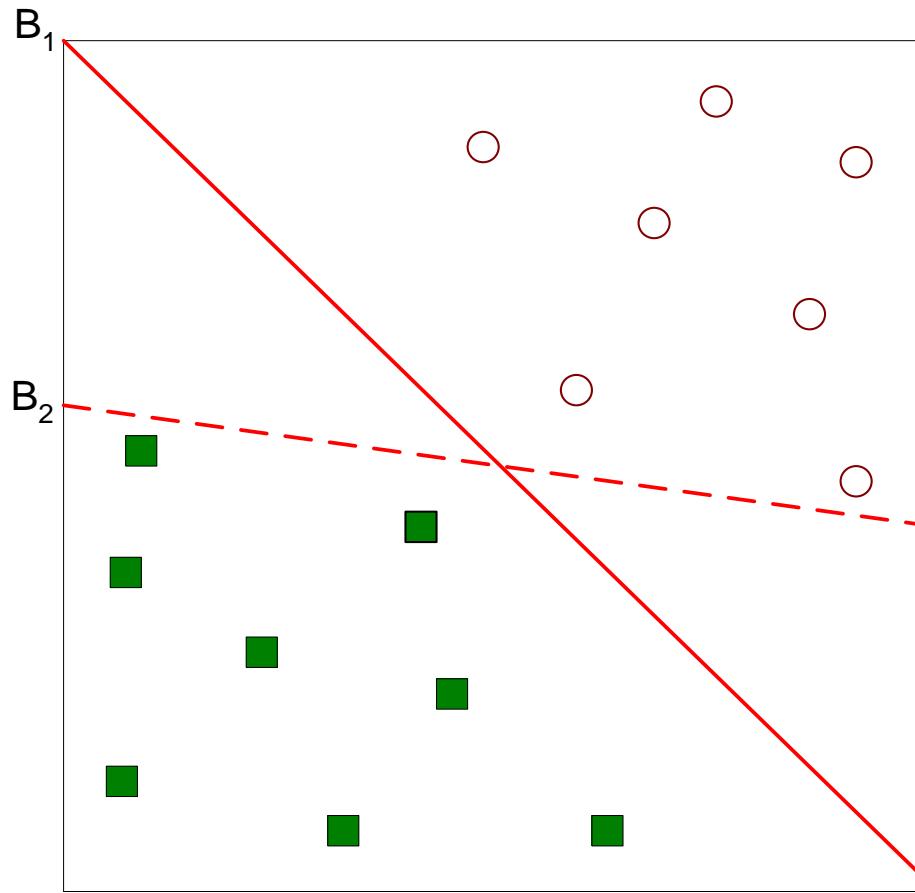
- Another possible solution

Support Vector Machines



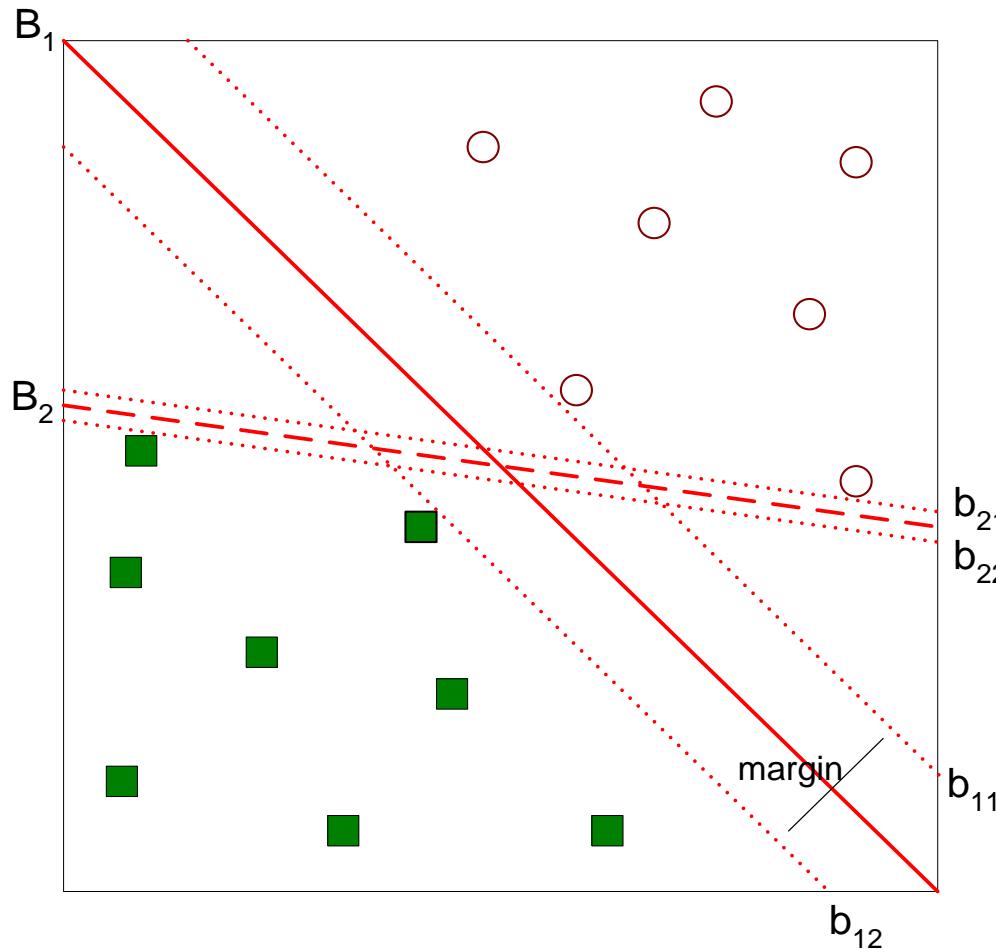
- Other possible solutions

Support Vector Machines



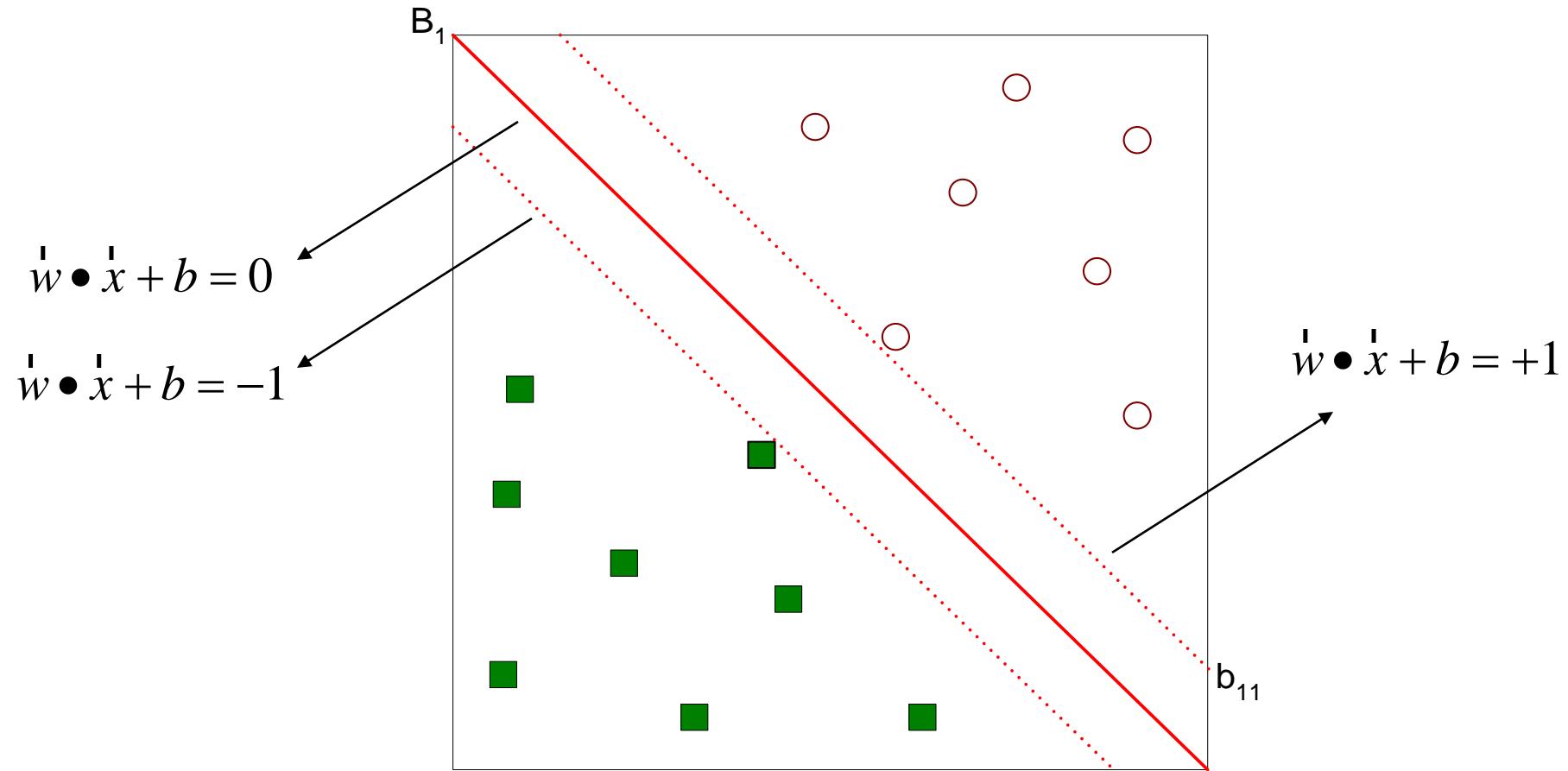
- Which one is better? B_1 or B_2 ?
- How do you define better?

Support Vector Machines



- Find hyperplane **maximizes** the margin => B_1 is better than B_2

Support Vector Machines



$$f(x) = \begin{cases} 1 & \text{if } w \cdot x + b \geq 1 \\ -1 & \text{if } w \cdot x + b \leq -1 \end{cases}$$

$$\text{Margin} = \frac{2}{\|w\|}$$

Linear SVM

- Linear model:

$$f(x) = \begin{cases} 1 & \text{if } \mathbf{w} \cdot \mathbf{x} + b \geq 1 \\ -1 & \text{if } \mathbf{w} \cdot \mathbf{x} + b \leq -1 \end{cases}$$

- Learning the model is equivalent to determining the values of \mathbf{w} and b
 - How to find \mathbf{w} and b from training data?

Learning Linear SVM

- Objective is to maximize: Margin = $\frac{2}{\|w\|}$
 - Which is equivalent to minimizing: $L(w) = \frac{\|w\|^2}{2}$
 - Subject to the following constraints:

$$y_i = \begin{cases} 1 & \text{if } w \bullet x_i + b \geq 1 \\ -1 & \text{if } w \bullet x_i + b \leq -1 \end{cases}$$

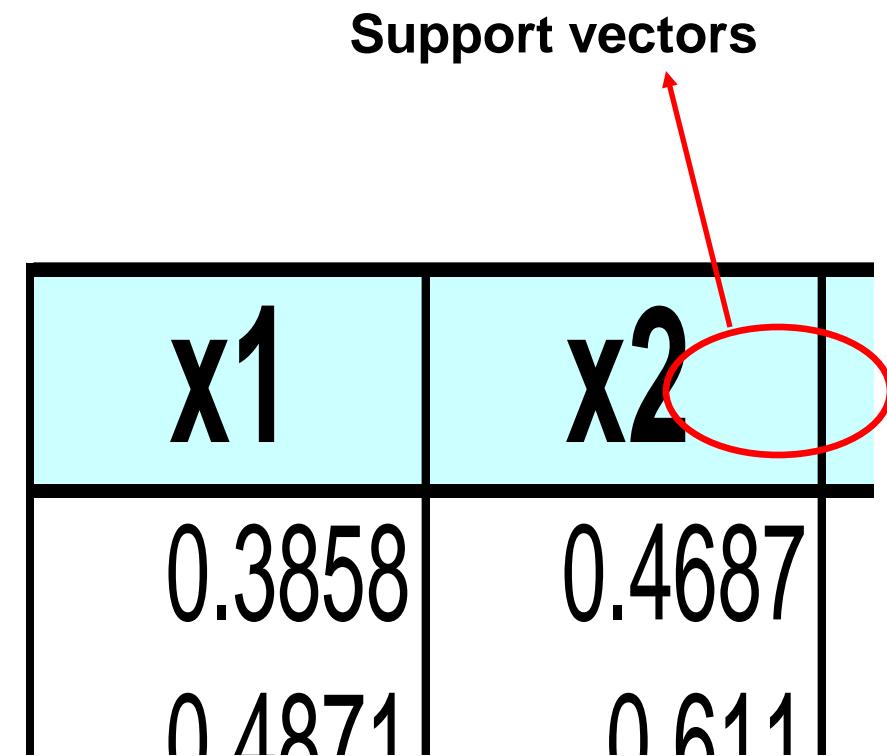
or

$$y_i(w \bullet x_i + b) \geq 1, \quad i = 1, 2, \dots, N$$

- ◆ This is a constrained optimization problem
 - Solve it using Lagrange multiplier method

Example of Linear SVM

Support vectors



x1	x2
0.3858	0.4687
0.1871	0.611

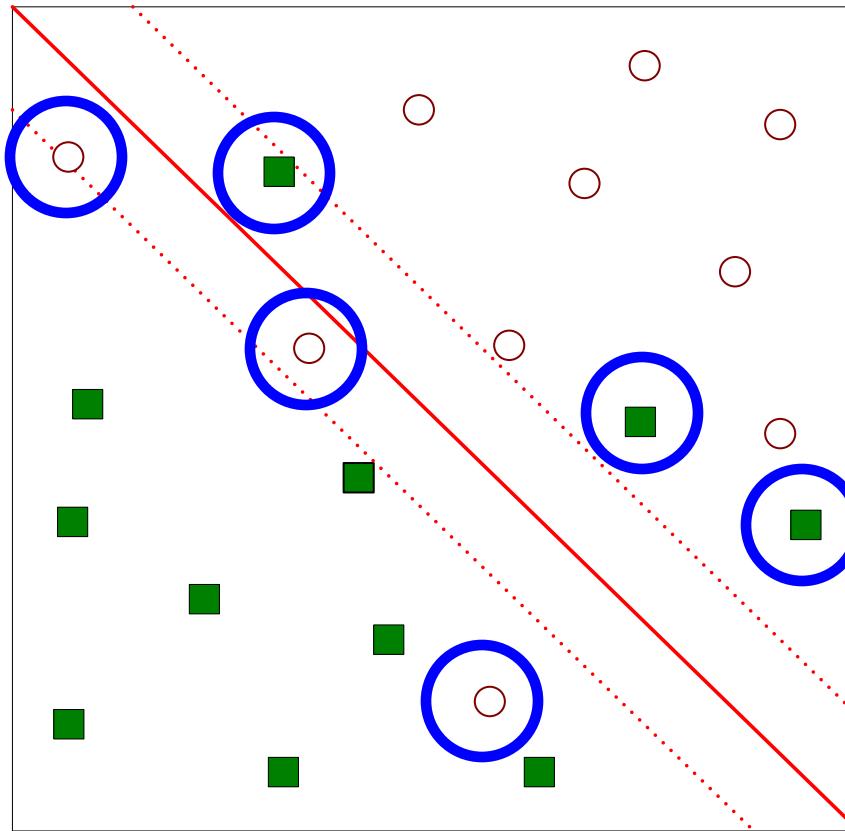
Learning Linear SVM

- Decision boundary depends only on support vectors
 - If you have data set with same support vectors, decision boundary will not change
 - How to classify using SVM once w and b are found? Given a test record, x_i

$$f(x_i) = \begin{cases} 1 & \text{if } w \cdot x_i + b \geq 1 \\ -1 & \text{if } w \cdot x_i + b \leq -1 \end{cases}$$

Support Vector Machines

- What if the problem is not linearly separable?



Support Vector Machines

- What if the problem is not linearly separable?
 - Introduce slack variables

- ◆ Need to minimize:

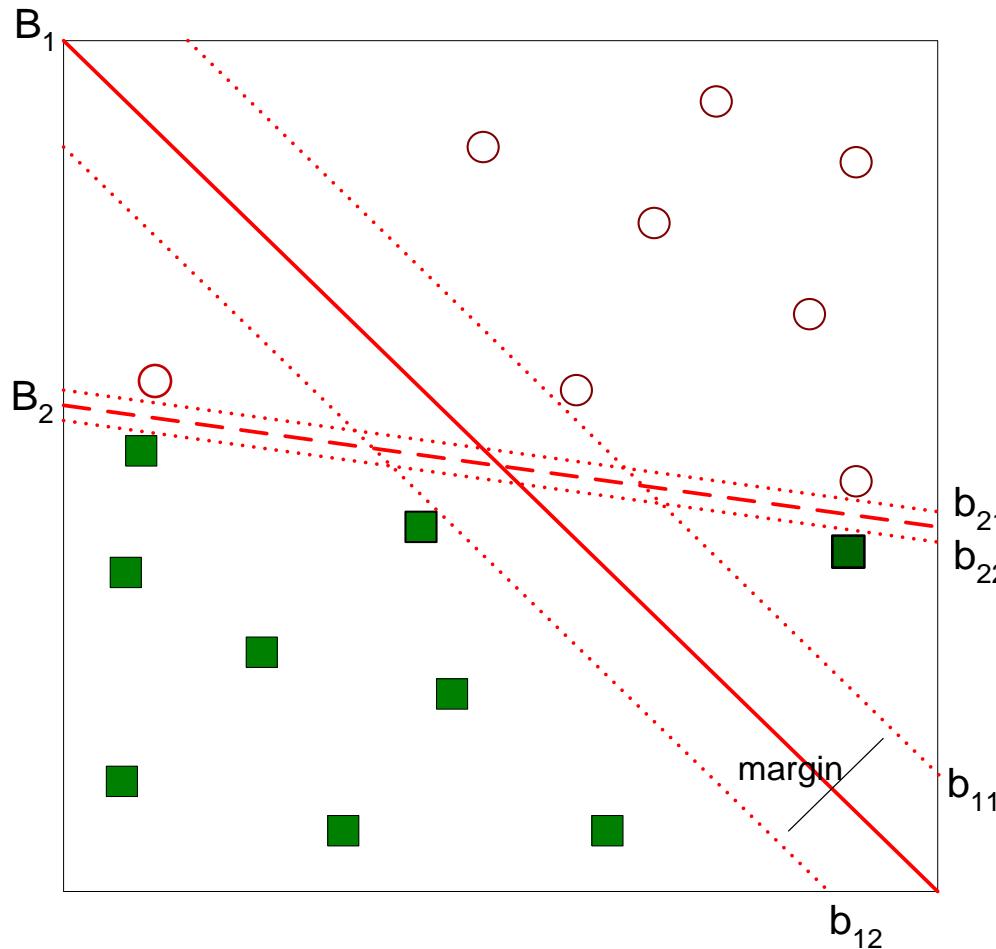
$$L(w) = \frac{\|w\|^2}{2} + C \left(\sum_{i=1}^N \xi_i^k \right)$$

- ◆ Subject to:

$$y_i = \begin{cases} 1 & \text{if } w \cdot x_i + b \geq 1 - \xi_i \\ -1 & \text{if } w \cdot x_i + b \leq -1 + \xi_i \end{cases}$$

- ◆ If k is 1 or 2, this leads to same objective function as linear SVM but with different constraints (see textbook)

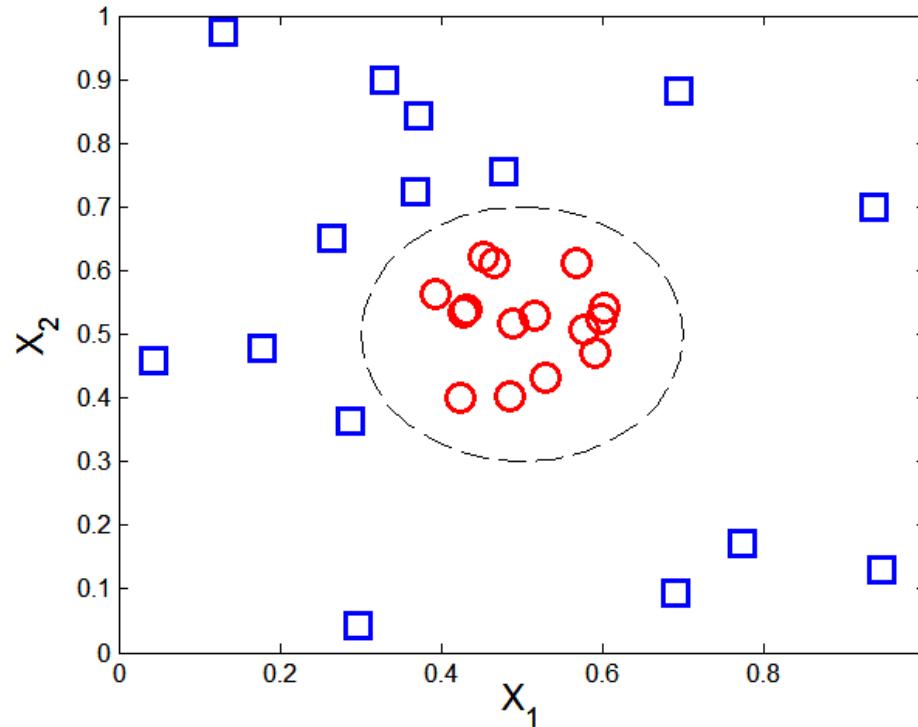
Support Vector Machines



- Find the hyperplane that optimizes both factors

Nonlinear Support Vector Machines

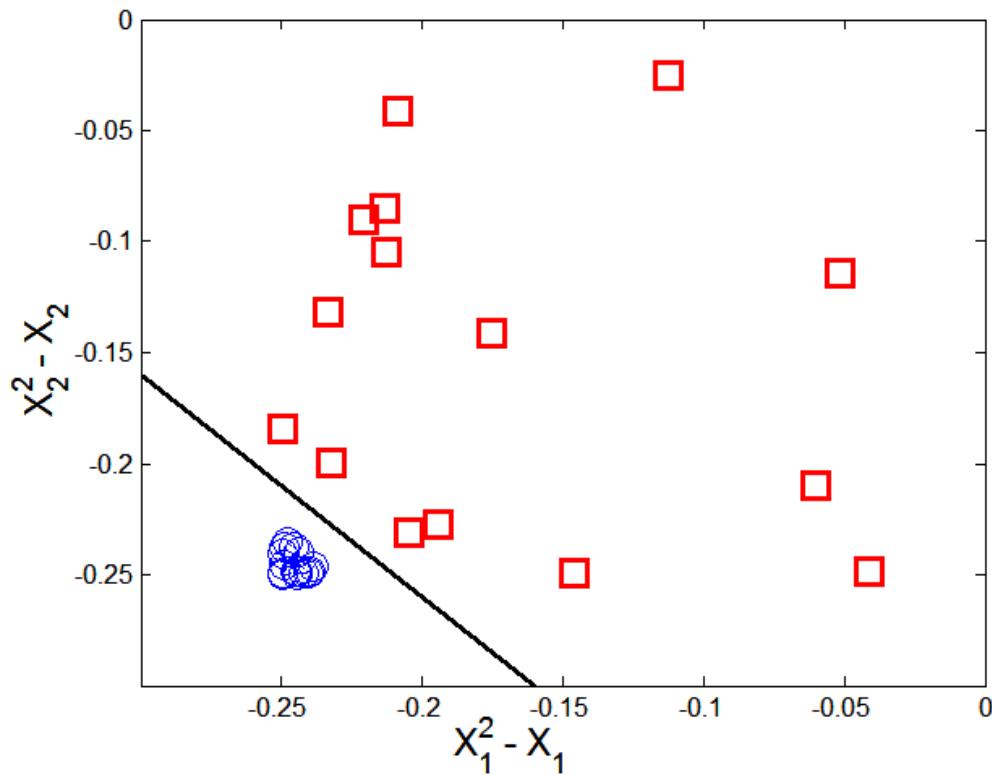
- What if decision boundary is not linear?



$$y(x_1, x_2) = \begin{cases} 1 & \text{if } \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2 \\ -1 & \text{otherwise} \end{cases}$$

Nonlinear Support Vector Machines

- Trick: Transform data into higher dimensional space



$$x_1^2 - x_1 + x_2^2 - x_2 = -0.46.$$

$$\Phi : (x_1, x_2) \longrightarrow (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, 1).$$

$$w_4x_1^2 + w_3x_2^2 + w_2\sqrt{2}x_1 + w_1\sqrt{2}x_2 + w_0 = 0.$$

Decision boundary:

$$\vec{w} \bullet \Phi(\vec{x}) + b = 0$$

Learning Nonlinear SVM

- Optimization problem:

$$\min_w \frac{\|w\|^2}{2}$$

subject to $y_i(w \cdot \Phi(x_i) + b) \geq 1, \forall \{(x_i, y_i)\}$

- Which leads to the same set of equations (but involve $\Phi(x)$ instead of x)

$$L_D = \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j) \quad \mathbf{w} = \sum_i \lambda_i y_i \Phi(\mathbf{x}_i)$$
$$\lambda_i \{ y_i \left(\sum_j \lambda_j y_j \Phi(\mathbf{x}_j) \cdot \Phi(\mathbf{x}_i) + b \right) - 1 \} = 0,$$

$$f(\mathbf{z}) = \text{sign}(\mathbf{w} \cdot \Phi(\mathbf{z}) + b) = \text{sign} \left(\sum_{i=1}^n \lambda_i y_i \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{z}) + b \right).$$

Learning NonLinear SVM

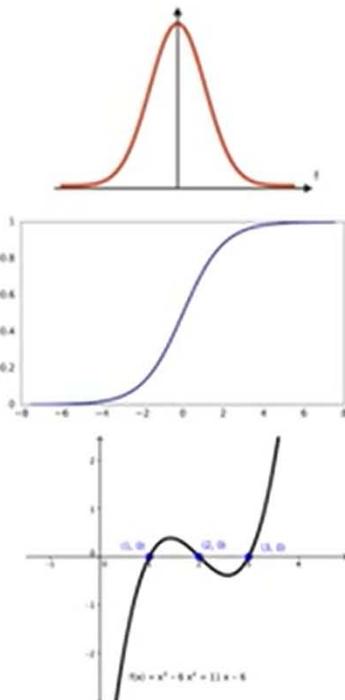
- Issues:
 - What type of mapping function Φ should be used?
 - How to do the computation in high dimensional space?
 - ◆ Most computations involve dot product $\Phi(x_i) \bullet \Phi(x_j)$
 - ◆ Curse of dimensionality?

Learning Nonlinear SVM

- Kernel Trick:

- $\Phi(x_i) \bullet \Phi(x_j) = K(x_i, x_j)$

- $K(x_i, x_j)$ is a kernel function (expressed in terms of the coordinates in the original space)



Gaussian RBF Kernel

$$K(\vec{x}, \vec{l}^i) = e^{-\frac{\|\vec{x} - \vec{l}^i\|^2}{2\sigma^2}}$$

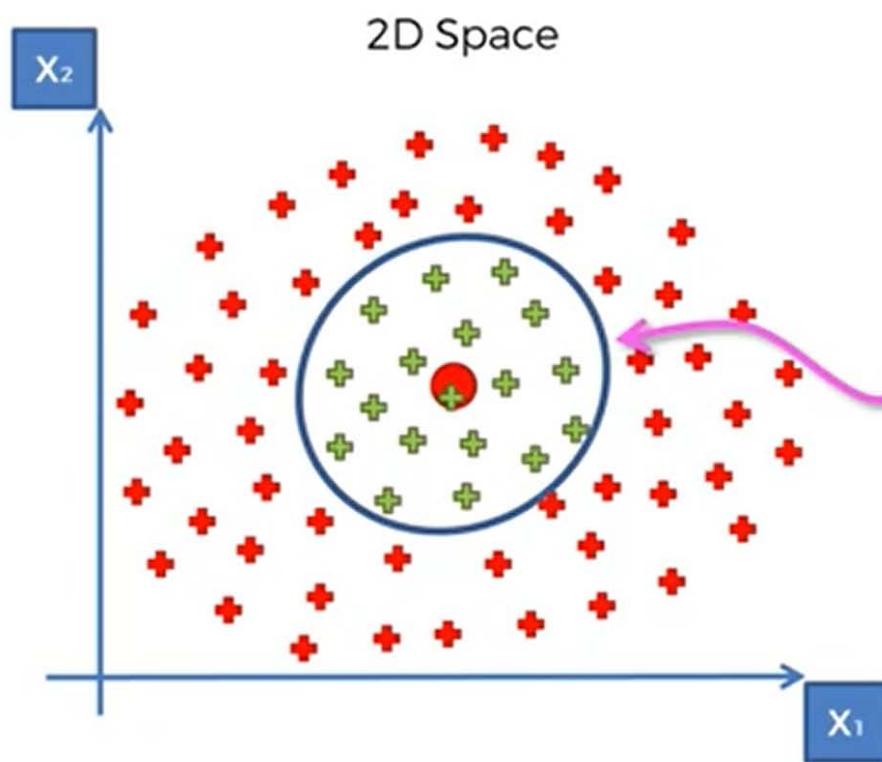
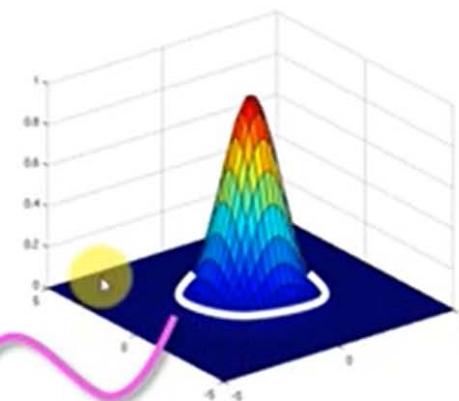
Sigmoid Kernel

$$K(X, Y) = \tanh(\gamma \cdot X^T Y + r)$$

Polynomial Kernel

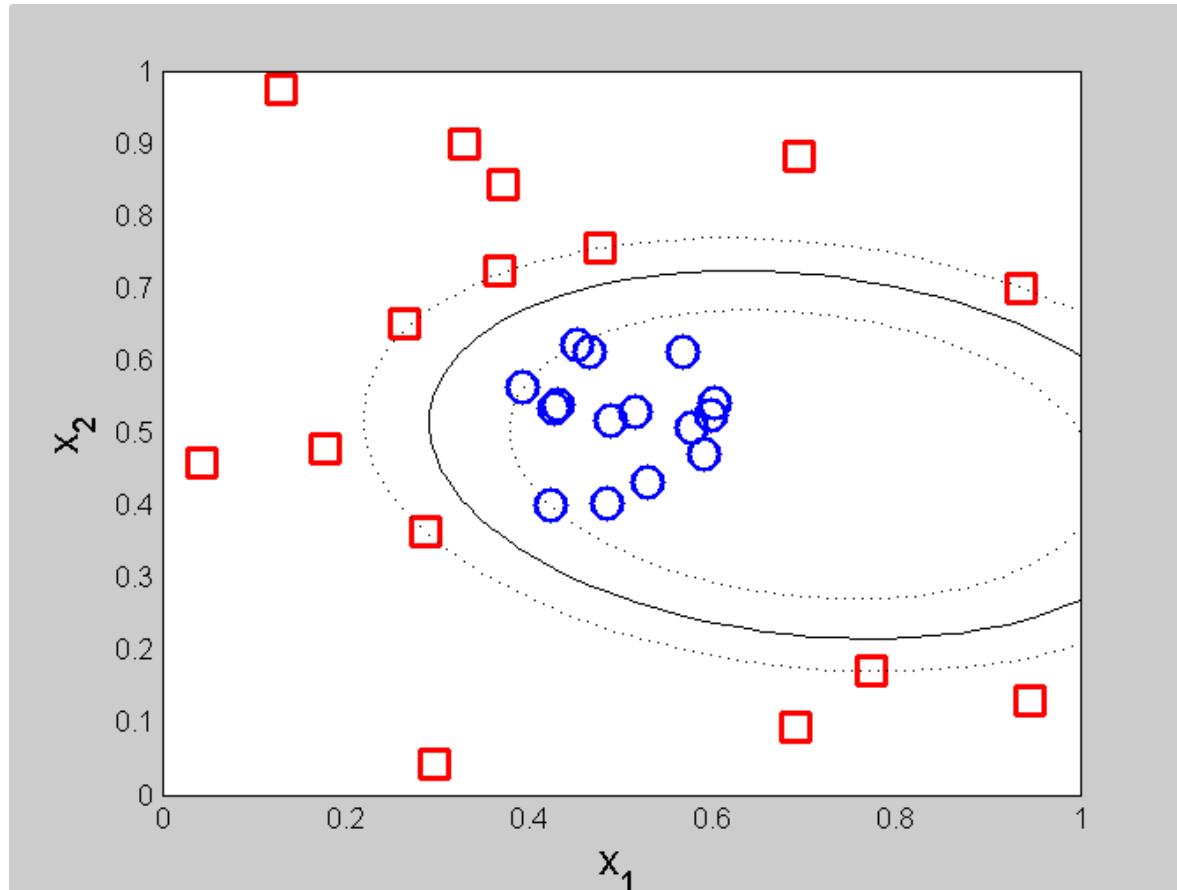
$$K(X, Y) = (\gamma \cdot X^T Y + r)^d, \gamma > 0$$

Gaussian RBF Kernel

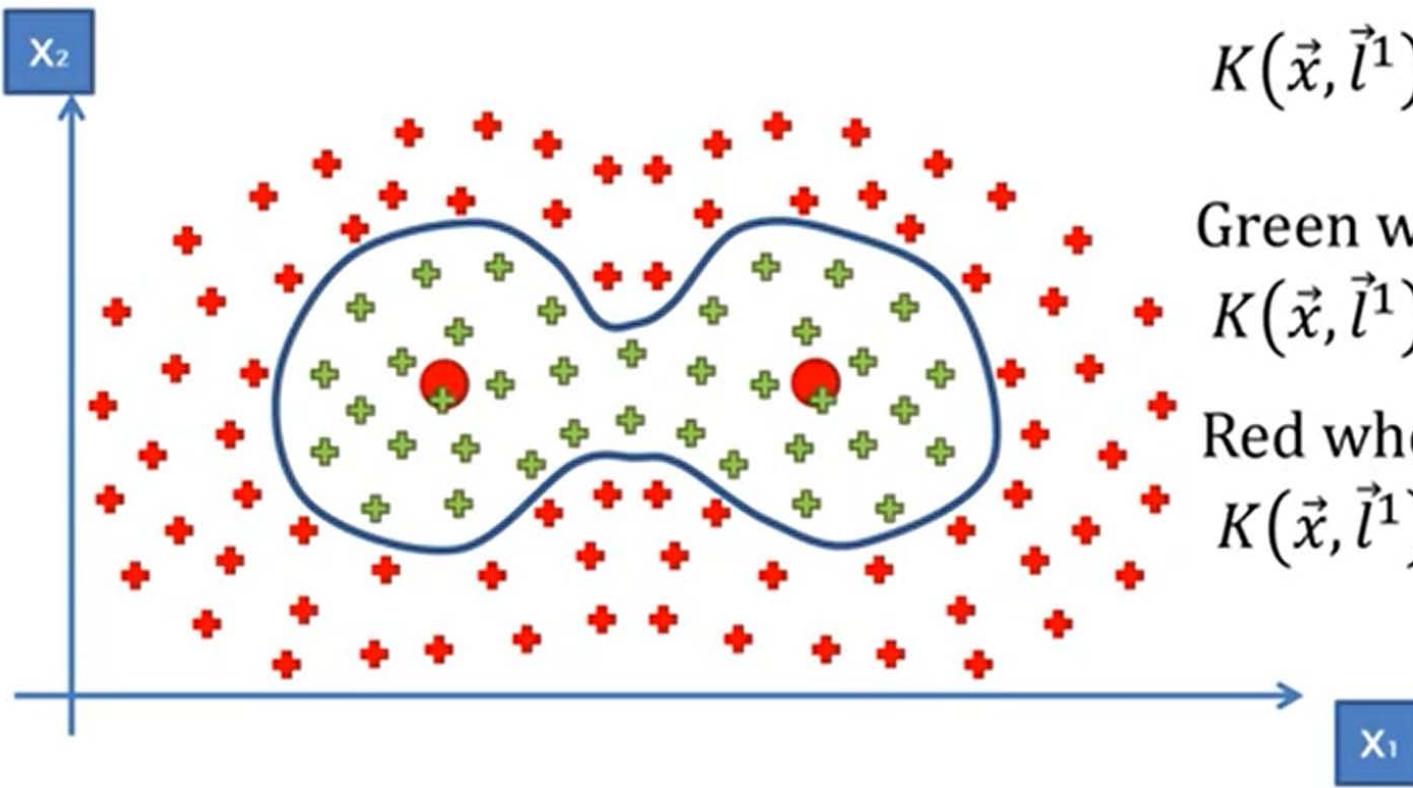


$$K(\vec{x}, \vec{l}^i) = e^{-\frac{\|\vec{x} - \vec{l}^i\|^2}{2\sigma^2}}$$

Example of Nonlinear SVM



SVM with polynomial degree 2 kernel



$$K(\vec{x}, \vec{l}^1) + K(\vec{x}, \vec{l}^2)$$

(Simplified Formula)

Green when:

$$K(\vec{x}, \vec{l}^1) + K(\vec{x}, \vec{l}^2) > 0$$

Red when:

$$K(\vec{x}, \vec{l}^1) + K(\vec{x}, \vec{l}^2) = 0$$

Learning Nonlinear SVM

- Advantages of using kernel:
 - Don't have to know the mapping function Φ
 - Computing dot product $\Phi(x_i) \bullet \Phi(x_j)$ in the original space avoids curse of dimensionality
- Not all functions can be kernels
 - Must make sure there is a corresponding Φ in some high-dimensional space
 - Mercer's theorem (see textbook)

Characteristics of SVM

- Since the learning problem is formulated as a convex optimization problem, efficient algorithms are available to find the global minima of the objective function (many of the other methods use greedy approaches and find locally optimal solutions)
- Overfitting is addressed by maximizing the margin of the decision boundary, but the user still needs to provide the type of kernel function and cost function
- Difficult to handle missing values
- Robust to noise
- High computational complexity for building the model