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Support Vector Machines 

 Find a linear hyperplane (decision boundary) that will separate the data 
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Support Vector Machines 

 One Possible Solution 

B1
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Support Vector Machines 

 Another possible solution 

B2
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Support Vector Machines 

 Other possible solutions 

B2
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Support Vector Machines 

 Which one is better? B1 or B2? 
 How do you define better? 

B1

B2
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Support Vector Machines 

 Find hyperplane maximizes the margin => B1 is better than B2 

B1

B2

b11

b12

b21
b22

margin
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Support Vector Machines 
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Linear SVM 

 Linear model:  
 
 
 

 Learning the model is equivalent to determining 
the values of  
– How to find             from training data? 
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Learning Linear SVM 

 Objective is to maximize: 
 
– Which is equivalent to minimizing: 
– Subject to the following constraints: 

 
 

   or 
 

 This is a constrained optimization problem 
– Solve it using Lagrange multiplier method 
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Example of Linear SVM 

x1 x2
0.3858 0.4687
0 4871 0 611

Support vectors 
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Learning Linear SVM 

 Decision boundary depends only on support 
vectors 
–  If you have data set with same support 

vectors, decision boundary will not change 
 

– How to classify using SVM once w and b are 
found? Given a test record, xi 
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Support Vector Machines 

 What if the problem is not linearly separable? 
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Support Vector Machines 

 What if the problem is not linearly separable? 
– Introduce slack variables 

 Need to minimize: 
 

 Subject to:  
 
 
 
 

 If k is 1 or 2, this leads to same objective function 
as linear SVM but with different constraints (see 
textbook) 
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Support Vector Machines 

 Find the hyperplane that optimizes both factors 

B1

B2

b11

b12

b21
b22

margin
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Nonlinear Support Vector Machines 

 What if decision boundary is not linear? 
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Nonlinear Support Vector Machines 

 Trick: Transform data into higher dimensional 
space 

0)( =+Φ• bxw rr
Decision boundary: 
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Learning Nonlinear SVM 

 Optimization problem: 
 
 

 Which leads to the same set of equations (but 
involve Φ(x) instead of x) 
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Learning NonLinear SVM 

 Issues: 
– What type of mapping function Φ should be 

used? 
– How to do the computation in high 

dimensional space? 
 Most computations involve dot product Φ(xi)• Φ(xj)  
 Curse of dimensionality? 
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Learning Nonlinear SVM 

 Kernel Trick: 
– Φ(xi)• Φ(xj) = K(xi, xj)  

– K(xi, xj) is a kernel function (expressed in terms of the 
coordinates in the original space 
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Gaussian RBF Kernel 
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Example of Nonlinear SVM 

SVM with polynomial 
degree 2 kernel 
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Learning Nonlinear SVM 

 Advantages of using kernel: 
– Don’t have to know the mapping function Φ 
– Computing dot product Φ(xi)• Φ(xj) in the 

original space avoids curse of dimensionality 
 

 Not all functions can be kernels 
– Must make sure there is a corresponding Φ in 

some high-dimensional space 
– Mercer’s theorem (see textbook) 



02/14/2018        Introduction to Data Mining, 2nd Edition                            25 

Characteristics of SVM 

 Since the learning problem is formulated as a convex 
optimization problem, efficient algorithms are available to 
find the global minima of the objective function (many of 
the other methods use greedy approaches and find locally 
optimal solutions) 

 Overfitting is addressed by maximizing the margin of the 
decision boundary, but the user still needs to provide the 
type of kernel function and cost function 

 Difficult to handle missing values 
 Robust to noise 
 High computational complexity for building the model 
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