
Introduction to Python
Object-oriented programming II

Dr. John Violos

Harokopio University
Department of Informatics and Telematics

• https://www.learnpython.org
• https://www.w3schools.com/python/python_variables.asp
• https://www.educba.com/java-vs-python/
• http://net-informations.com/python/iq/objects.htm
• https://www.programiz.com/python-programming/methods/built-in/classmethod
• https://www.geeksforgeeks.org/polymorphism-in-python/
• https://www.geeksforgeeks.org/g-fact-34-class-or-static-variables-in-python/
• https://www.tutorialspoint.com/python/python_multithreading.htm
• https://www.pythonforbeginners.com/basics/list-comprehensions-in-python
• https://docs.python.org/3/library/threading.html

urls:

Harokopio University Object Oriented Programming II

https://www.w3schools.com/python/python_variables.asp
http://net-informations.com/python/iq/objects.htm
https://www.programiz.com/python-programming/methods/built-in/classmethod
https://www.geeksforgeeks.org/polymorphism-in-python/
https://www.tutorialspoint.com/python/python_multithreading.htm
https://www.pythonforbeginners.com/basics/list-comprehensions-in-python
https://docs.python.org/3/library/threading.html

Python code is much
more compact

Java Python

Longer lines of code as compared to
Python
public class EduCba
{
public static void main (String []
args)
{
System.out.println(“Hello EduCBA”);
}
}

print (“Hello EduCBA”)

Harokopio University Object Oriented Programming II

Indentations=Nesting
Java Python

At the end of the statement if you
miss semicolon it throws an error.
In Java you must define particular
block using curly braces without it
code won’t work.

In python, statement do not need a
semicolon to end.
Each line represents a new
statement
In python, you have never seen a
sight of curly braces (wrapping
blocks) but indentation is mandatory
in python. Indentation also improves
readability of code.

Harokopio University Object Oriented Programming II

Dynamic typed
Java Python

In java you must declare type of the
data.
class Example
{
public static void main (String []
args)
{
int x=10;
System.out.println(x);
}
}

Python codes are dynamic typed.
This means that you don’t need to
declare a type of the variable this is
known as duck typing.
X = 45
site = “educba.com”

Harokopio University Object Oriented Programming II

http://educba.com

Speed
Java Python

In terms of speed, Java is faster.
Whenever in projects speed matters
the java is best.

It is slower because python is an
interpreter and also it determines
the type of data at runtime.

Harokopio University Object Oriented Programming II

Portability
Java Python

Due to the high popularity of Java,
JVM (Java Virtual Machine) is
available almost everywhere.

Python is also portable but in front of
java, python is not popular.

Harokopio University Object Oriented Programming II

Databases
Java Python

(JDBC)Java Database Connectivity
is most popular and widely used to
connect with database.

Python’s database access layers are
weaker than Java’s JDBC. This is
why it rarely used in enterprises.

Harokopio University Object Oriented Programming II

Easy to use
Java Python

Java is not easy to use as compared
to python because there is no
dynamic programming concept and
codes are longer than python.

Python codes are shorter than java.
python follows dynamic
programming python codes not only
easy to use but also easy to
understand because of indentation.
Python has high code readability

Harokopio University Object Oriented Programming II

Python interpreter

Manually compile:
py_compile
compileall

>>> import py_compile
>>> py_compile.compile(‘abc.py’)

Automatically compile all files in a directory
>>> python -m compileall

Harokopio University Object Oriented Programming II

Text Type: str x=“John” x = ‘John’
Numeric Types: int, float, complex x=15 x=15.0 x= 7+2j
Sequence Types: list, tuple, range l=[1,2,3,4] t=(“male”,”female”) r=range(10)
Mapping Type: dict d={"k1":"v1","k2":"v2"}
Set Types: set, frozenset s={2,4,7}
Boolean Type: bool b=True
x = float(20.5) #Direct specify the data type
w = float(“4.2") #casting
You can get the data type of any object by using the type() function:

Normally, when you create a variable inside a function, that variable is local, and can only be
used inside that function.
To create a global variable inside a function, you can use the global keyword.
def myfunc():
 global x
 x = "fantastic"

myfunc()
print("Python is " + x)

Variables

Harokopio University Object Oriented Programming II

Operators
Operator Description Example

and Returns True if both statements are true x < 5 and x < 10
or Returns True if one of the statements is true x < 5 or x < 4
not Reverse the result, returns False if the result is true not(x < 5 and x < 10)
is Returns True if both variables are the same object x is y

is not Returns True if both variables are not the same object x is not y

in Returns True if a sequence with the specified value is
present in the object (Collections) x in y

not in Returns True if a sequence with the specified value is
not present in the object x not in y

Arithmetic/Assignment/Comparison Operators same as Java

Harokopio University Object Oriented Programming II

a = 33; b = 34
if b > a:
 print("b is greater than a")
elif a == b:
 print("a and b are equal")
else:
 print("a is greater than b”)

print("A") if a > b else print(“B") #Short Hand If ... Else
print("A") if a > b else print("=") if a == b else print(“B")

Nested If same as Java.

Combine conditional statements same as Java.
if a > b and c > a:
if a > b or a > c:

If else

Harokopio University Object Oriented Programming II

i = 2
while i < 6:
 print(i)
 if i == 3:
 break # continue
 i += 1
else: #run a block once the condition is no longer true
 print("we get 6”) #it will not run in case of break

Python doesn't have do-while loop.

while

Harokopio University Object Oriented Programming II

fruits = ["apple", "banana", "cherry"]
for x in fruits:
 if x == "banana":
 continue
 print(x)

for x in range(2, 30, 3):
 print(x)
else: #a block to be executed when the loop is finished
 print(“end”)

letters = ['a', 'b', ‘c']
numbers = [0, 1, 2]
for l, n in zip(letters, numbers):
 print("val1 "+str(l)+" val2: "+str(n))

for

Harokopio University Object Oriented Programming II

def my_function(x='default value’,y): # It could work as overloading(Υπέρφόρτωση)
 if x=='hi':
 return “5 * y” # It returns String
 else:
 return 10 * y # It returns int  

my_function("hi",2)
my_function(y=2,x=“hi")

Python is a dynamically typed language, so the concept of overloading simply does not apply to it.
If the number of arguments is unknown, add a * before the parameter name:
def my_function2(*kids): # Could work as overloading. kids can be different types
 print("The youngest child is " + kids[2])

my_function2("Emil", "Tobias", "Linus")

def my_function3(country = "Norway"):
 print("I am from " + country)

Function

Harokopio University Object Oriented Programming II

small anonymous function that can take any number of arguments, but can only
have one expression. Anonymous function is required for a short period of time.
x = lambda a, b, c : a + b + c
print(x(5, 6, 2))

Anonymous function inside another function
def myfunc(n):
 return lambda a : a * n

mydoubler = myfunc(2)
mytripler = myfunc(3)

print(mydoubler(11))
print(mytripler(11))

lambda
lambda arguments : expression

Harokopio University Object Oriented Programming II

Python classes provide all the standard features of Object Oriented Programming
Language.
A Python class defines a data type , which contains variables, properties and
methods. A class describes the abstract characteristics of a real-life thing.
self (Python) = this (Java)

class CSStudent:
 stream = 'cse' # Class Variable
 def __init__(self,name,roll):
 self.name = name # Instance Variable
 self.roll = roll # Instance Variable

Class

Harokopio University Object Oriented Programming II

Python's Objects are instances of classes created at run-time.
All Python objects have a unique identity . The built-in function id() returns the
identity of an object as an integer. This integer usually corresponds to the object's
location in memory, although this is specific to the Python implementation and the
platform being used. The "is" operator compares the identity of two objects.

Objects

Harokopio University Object Oriented Programming II

class employeePublic:
 def __init__(self, name, sal): #constructor
 self.name=name # public attribute
 self.salary=sal # public attribute

class employeeProtected:
 def __init__(self, name, sal):
 self._name=name # protected attribute
 self._salary=sal # We are all adults here

class employeePrivate:
 def __init__(self, name, sal):
 self.__name=name # private attribute
 c__salary=sal # private attribute  
 def __fun(self):
 print("Private method”)

Access modifiers

Harokopio University Object Oriented Programming II

A method that is bound to a class rather than its object. It doesn't require creation of a
class instance
class person:
 totalObjects=0
 def __init__(self):
 person.totalObjects=person.totalObjects+1

 @classmethod
 def showcount(cls): # cls, which refers to the person class
 print("Total objects: ",cls.totalObjects)

p1=person()
p2=person()
person.showcount()
p1.showcount() # method can be called using an object also

@ classmethod

Harokopio University Object Oriented Programming II

Static method knows nothing about the class and just deals with the parameters
Class method works with the class since its parameter is always the class itself.
A static method does not receive an implicit first argument.
A static method is bound to the class and not the object of the class.
A static method can’t access or modify class state.
It is present in a class because it makes sense for the method to be present in class.

class person:
 @staticmethod
 def greet(name):
 print(“Hello!"+name)
p1.greet()

@ staticmethod

Harokopio University Object Oriented Programming II

Python Inheritance enable us to define a class that takes all the functionality from
parent class and allows us to add more. Inheritance is used to specify that one
class will get most or all of its features from its parent class.
Python supports multiple inheritances, unlike Java
Python does not have any equivalent of interfaces
class Student(Person, SecondParrent):
 def __init__(self, fname, lname, year):
 super().__init__(fname, lname)
 self.graduationyear = year

 def welcome(self):
 print("Welcome", self.firstname, self.lastname, "to the
class of", self.graduationyear)

Abstract Classes: Inherent from ABC and decorator @abstractmethod

Inheritance

Harokopio University Object Oriented Programming II

In Python method overriding (Υπέρβαση) occurs by simply defining in the child
class a method with the same name of a method in the parent class. When you
 define a method in the object you make this latter able to satisfy that method call,
so the implementations of its ancestors do not come in play.

class Parent(object):
 def __init__(self):
 self.value = 4
 def get_value(self):
 return self.value

class Child(Parent):
 def get_value(self):
 return self.value + 1

Override

Harokopio University Object Oriented Programming II

Polymorphism means same function name is used for different types.

1. Polymorphism out of Inheritance.
Python can use two different class types, in the same way. We create a for
loop that iterates through a tuple of objects. Then call the methods without
being concerned about which class type each object is. We assume that
these methods actually exist in each class.

2. Polymorphism with Inheritance like Java

3. Polymorphism with a Function and objects:
It is also possible to create a function that can take any object, allowing for
polymorphism.

Polymorphism(1/2)

Harokopio University Object Oriented Programming II

class India():
 def capital(self):
 print("New Delhi is the capital of India.")
 def language(self):
 print("Hindi is the most widely spoken language of India.")
 def type(self):
 print("India is a developing country.")

class USA():
 def capital(self):
 print("Washington, D.C. is the capital of USA.")
 def language(self):
 print("English is the primary language of USA.")
 def type(self):
 print("USA is a developed country.")

obj_ind = India()
obj_usa = USA()
for country in (obj_ind, obj_usa):
 country.capital()
 country.language()
 country.type()

Polymorphism(1/2)

Harokopio University Object Oriented Programming II

class India():
 def capital(self):
 print("New Delhi is the capital of India.")
 def language(self):
 print("Hindi is the most widely spoken language of India.")
 def type(self):
 print("India is a developing country.")

class USA():
 def capital(self):
 print("Washington, D.C. is the capital of USA.")
 def language(self):
 print("English is the primary language of USA.")
 def type(self):
 print("USA is a developed country.")

def func(obj):
 obj.capital()
 obj.language()
 obj.type()

obj_ind = India()
obj_usa = USA()
func(obj_ind); func(obj_usa)

Polymorphism(2/2)

Harokopio University Object Oriented Programming II

try:
 print(x)
 f = open("demofile.txt")
 f.write("Lorum Ipsum")
except NameError: #the try block raises a NameError
 print("Variable x is not defined")
except:
 print("Something went wrong") #general any exception
else: #a block of code to be executed if no errors were raised
 print("Nothing went wrong")
finally: #will be executed regardless if the try block raises an error or not
 print("The 'try except' is finished")

if x < 0:
 raise Exception("Sorry, no numbers below zero")

class MyError(Exception): #User-defined Exceptions
 def __init__(self, value): # Constructor or Initializer
 self.value = value
 def __str__(self): # __str__ is to print() the value
 return(repr(self.value))

Exceptions

Harokopio University Object Oriented Programming II

f = open("demofile2.txt", “a") #append
f.write("Now the file has more content!")
f.close()

#open and read the file after the appending:
f = open("demofile2.txt", "r")
print(f.read())

import pickle #serializing & de-serializing of python objects
example_dict = {1:"6",2:"2",3:"f"}
pickle_out = open("dict.pickle","wb")
pickle.dump(example_dict, pickle_out)
pickle_out.close()
pickle_in = open("dict.pickle","rb")
example_dict = pickle.load(pickle_in)
print(example_dict)

Files

Harokopio University Object Oriented Programming II

import thread
def function_to_run(threadName, delay): #A function for the thread
 print "%s: %s" % (threadName, time.ctime(time.time()))

try: # Create two threads as follows
 thread.start_new_thread(function_to_run, ("Thread-1", 2,))
 thread.start_new_thread(function_to_run, ("Thread-2", 4,))
except:
 print (“Error: unable to start thread")
Threading Module: Define a new subclass of the Thread class
run() − The run() method is the entry point for a thread.
start() − The start() method starts a thread by calling the run method.
join([time]) − The join() waits for threads to terminate.
isAlive() − The isAlive() method checks whether a thread is still executing.
getName() − The getName() method returns the name of a thread.
setName() − The setName() method sets the name of a thread.

Threads(1/2)

Harokopio University Object Oriented Programming II

import threading
class myThread (threading.Thread):
 def __init__(self, threadID, name, counter): # To add additional arguments
 threading.Thread.__init__(self)
 self.threadID = threadID
 self.name = name
 self.counter = counter
 def run(self): #To implement what the thread should do when started
 print "Starting " + self.name
 threadLock.acquire() # Get lock to synchronize threads
 print_time(self.name, self.counter, 3)
 threadLock.release() # Free lock to release next thread
def print_time(threadName, delay, counter):
 print "%s: %s" % (threadName, time.ctime(time.time()))
threadLock = threading.Lock()
threads = []
thread1 = myThread(1, "Thread-1", 1) # Create new threads
thread2 = myThread(2, "Thread-2", 2)
thread1.start(); thread2.start() # Start new Threads
threads.append(thread1); threads.append(thread2) # Add threads to thread list
for t in threads: # Wait for all threads to complete
 t.join() # waits for threads to terminate
print "Exiting Main Thread"

Threads(2/2)

Harokopio University Object Oriented Programming II

cars = ["Smart", "Volvo", "BMW"]
x = cars[0] #Get the value of the first array item
cars[0] = "Mini Cooper"# Modify the value of an array item
l = len(cars) #The number of elements in the cars array
for x in cars: #Looping Array Elements
 print(x)
cars.append("Honda") #add an element to an array
cars.pop(0) #To remove an element from the array
cars.remove("Volvo") #to remove an element. no equals(Java)
cars.clear() #Removes all the elements from the list
cars.copy() #Returns a copy of the list
cars.count("Smart") #Returns a copy of the list
cars.extend("Chrysler") #Add the elements of an iterable, to the end
cars.insert("VW") #Adds an element at the specified position
cars.reverse() #Reverses the order of the list
cars.sort() #Sorts the list
list_b=[2,3,45,6, True,"John",True,datetime.datetime.now()]
List Comprehensions
new_list = [expression(i) for i in old_list if filter(i)]

arrays(lists)

Harokopio University Object Oriented Programming II

A tuple is a collection which is ordered and unchangeable
thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon",
"mango")
print(thistuple[2:5])
thistuple[-4:-1]
if "apple" in thistuple:
myit = iter(thistuple) # to get an iterator
print(next(myit))

A set is a collection which is unordered and unindexed (Java: HashSet)
thisset = {"apple", "banana", "cherry"}
print("banana" in thisset)
thisset.add("orange")
thisset.update(["orange", "mango", "grapes"]) #Add multiple items to a set
thisset.remove("banana")
x = thisset.pop() #Remove the last item
set3 = set1.union(set2) #intersection() difference() symmetric_difference()

tuple & set

Harokopio University Object Oriented Programming II

Collection which is unordered, changeable and indexed (Java:HashMap)
thisdict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
x = thisdict["model"]
x = thisdict.get("model")
thisdict["year"] = 2018 # Change Value
for x in thisdict: #Loop Through a Dictionary
 print(x) # Print all key names in the dictionary, one by one
 print(thisdict[x]) # Print all values in the dictionary
thisdict.values() #to return values of a dictionary
for x, y in thisdict.items(): #Loop through both keys and values
 print(x, y)
if "model" in thisdict: #Check if "model" is in the dictionary
thisdict["color"] = "red" #Adding an item to the dictionary
thisdict.pop("model") #removes the item with the specified key name
thisdict.popitem() # removes the last inserted item
del thisdict["model"] #removes the item with the specified key name

dictionary

Harokopio University Object Oriented Programming II

storing and exchanging data From JSON string -> dict
import json
x = '{ "name":"John", "age":30, "city":"New York"}' # some JSON:
y = json.loads(x) # parse x:
print(y["age"]) # the result is a Python dictionary:

From dict, list, tuple, string, int, float, True, False -> JSON str
x = {
 "name": "John",
 "age": 30,
 "married": True,
 "divorced": False,
 "children": ("Ann","Billy"),
 "pets": None,
 "cars": [
 {"model": "BMW 230", "mpg": 27.5},
 {"model": "Ford Edge", "mpg": 24.1}
]
}
print(json.dumps(x)) #from dict to JSON

Json

Harokopio University Object Oriented Programming II

import mysql.connector
mydb = mysql.connector.connect(
 host="localhost",
 user="yourusername",
 passwd="yourpassword",
 database="mydatabase")

mycursor = mydb.cursor()
sql = "SELECT * FROM customers WHERE address LIKE '%way%'"
mycursor.execute(sql)

myresult = mycursor.fetchall()
for x in myresult:
 print(x)

sql = "INSERT INTO customers (name, address) VALUES (%s, %s)"
val = ("John", "Highway 21")
mycursor.execute(sql, val)
mydb.commit()

mysql

Harokopio University Object Oriented Programming II

A module is a file consisting of Python code. A module can define functions, classes and
variables. It is a module_file.py

We can put multiple classes in single module to make it easy to read and follow the flow of the
program.

A package is a collection of python modules under a common namespace.
A directory of Python module(s)

import module1
from module import function

Python interpreter searches for the module in the following sequences −
• The current directory
• If the module isn't found, It searches each directory in the shell variable PYTHONPATH.
• If all else fails, Python checks the default path. On UNIX,default path is: /usr/local/lib/python/

Module

Harokopio University Object Oriented Programming II

http://docs.python.org/2/tutorial/modules.html#packages

