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In Industry 4.0, the emergence of new information technology and advanced manufacturing technology (e.g.,
digital twin, and robot) promotes the flexibility and smartness of manufacturing systems to deal with production
task fluctuation. Digital twin-driven manufacturing system with human-robot collaboration is a typical paradigm
of intelligent manufacturing. When production task changes, manufacturing system reconfiguration with dy-
namic opeartion task allocation between operator (human) and robot is a key manner to maintain the production
efficiency of intelligent manufacturing system with human-robot collaboration. However, the differences be-
tween operator and robot are neglected during reconfiguration of manufacturing system with human-robot
collaboration. To promote the reconfiguration accuracy and production efficiency, a dynamic reconfiguration
optimization method of intelligent manufacturing system with human-robot collaboration based on digital twin
is proposed in this paper, which the different characteristics between operator and robot are considered during
reconfiguration optimiztion. Firstly, a multi-objectives optimization model is constructed involving minimum
production cost, minimum production time, and minimum idle time to assign operation tasks between operator
and robot, where human factor is considered to ensure the production efficiency of operator. Second, non-
dominated sorting genetic algorithm-II (NSGA-II) is adopted to solve the proposed dynamic reconfiguration
optimization model. Finally, a case study is provided to demonstrate the effectiveness of the proposed reconfi-
guration optimization method for intelligent manufacturing system with human-robot collaboration.

1. Introduction two aspects — scalability and convertibility. The scalability [14,15] of

manufacturing system refers to improving the production throughout,

In Industry 4.0 era [1,2], the production model gradually transforms
from mass customization to mass personalization [3], which requires
more flexible and intelligent manufacturing system. Human-robot
collaboration [4-6] integrated with flexibility and smartness is suit-
able for coping with production task fluctuation, where the configura-
tion of manufacturing system with human-robot collaboration could be
adapted dynamically, that is, reconfiguration of manufacturing system
[7,8]. Besides, digital twin [9-11] is the key enabler to enhancing the
reconfiguration efficiency and accuracy of manufacturing systems with
human-robot collaboration.

Reconfigurable manufacturing system (RMS) [12] was proposed two
decades ago to cater to mass customization with the flexibility of part
family [13]. The flexibility of manufacturing system can be divided into
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which the convertibility within a specific part family is considered [16].
With the transformation of production mode, it is more important to
improve the convertibility of manufacturing system. Reconfigurable
machine tools (RMT) [17,18] as the key facility of RMS is a good attempt
to increase RMS convertibility. Moreover, a concept of delayed recon-
figuration named as D-RMS [19,20] was proposed to handle the RMS
convertibility. It can maintain partial production activities during
reconfiguration to reduce the negative influence of reconfiguration.
Recently, with the development of robot technology, the flexibility of
manufacturing derived from human-robot collaboration becomes
increasingly important [21], which can integrate new information and
communications technology (e.g. IoT [22], AI [23], Big data [24],
Digital twin [9], etc.) more effectively and increase the accuracy of
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reconfiguration resulting in higher productivity. However, the existing
researches on human-robot collaboration prefer to address the issues
about interaction between operator and robot (e.g., Gesture recognition
[25], Measurement of trust [26], fluency evaluation [27], etc.). There is
limited study focusing on the configuration changes due to production
task fluctuation with the consideration of the different characteristics
between operator and robot. Thus, a dynamic reconfiguration optimi-
zation method of intelligent manufacturing system with human-robot
collaboration based on digital twin is proposed in this paper. We
consider the different characteristics between operator and robot are
considered as well to optimize the operation task assignment process
and increase productivity through high collaboration efficiency between
operator and robot.

The remainder of this paper is organized as follows: Section 2 re-
views the related works. Section 3 analyzes the specific problem to be
solved in this paper in detail. Section 4 elaborates on the proposed dy-
namic reconfiguration optimization model that is solved by NSGA-IIL.
Section 5 validates the proposed method through a case study. Section
6 concludes this paper.

2. Related works

This section reviews the related works involving reconfigurable
manufacturing systems, human-robot collaboration in manufacturing
system, and digital twin of manufacturing system.

2.1. Reconfigurable manufacturing systems

In the scope of the traditional RMS, the most common reconfigura-
tion manner is to adapt configuration function through modularity and
integrability [28], that is, removing, replacing and adding modules with
standard physical and soft interfaces. Bortolini et al. [7] proposed an
optimization model for the dynamic management of RMS considering
the dynamic changes of auxiliary module. It is a typical study that ap-
plies the philosophy of the traditional RMS. Wang and Koren [14]
studied the scalability planning method for RMS through the adaption of
machine tools. Deif and ElMaraghy [15] explored a similar scalability
issue. The concept of delayed reconfigurable manufacturing system
(D-RMS) proposed by Huang et al. [19,20] also focused on the module
changes to realize rapid convertibility. Besides, the module adaption can
be used at machine level to complete reconfiguration of RMS as well.
Wang et al. [17] proposed a decision tree-based configuration design
method for RMT with dynamically changing the modules of RMT.
Huang et al. [18] studied digital twin-RMT design based on modular
structure. Morgan et al. [29] proposed smart RMT for catering to the
requirement of industry 4.0. However, modular reconfiguration is not
efficient and cost-effective for high diversity demand during the mass
personalisation era. The reconfiguration philosophy should be expanded
to explore a more intelligent and flexible way. Collaborative robots have
the potential ability to make simple, quick, and cheap reconfiguration
[21]. It is meaningful and necessary to investigate the reconfiguration
method based on manufacturing system with human-robot collabora-
tion for future industry.

2.2. Human-robot collaboration in manufacturing system

Recently, human-centric manufacturing gradually come into view
when discussing futuristic industry [6], where human-robot collabora-
tion in manufacturing system is the core topic. Lu et al. [30] proposed
human-centric manufacturing system framework and human-centric
human-robot collaboration framework for Industry 5.0. The core idea
of Lu’s study is to focus on the operator’s comfort level with additional
optimization objectives, which will be specified in the optimization
model of this paper. Liu et al. [4] explored the application of remote
human-robot collaboration based on cyber-physical system for a haz-
ardous manufacturing environment. Li et al. [5] proposed proactive
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human-robot collaboration as a foreseeable informatics-based cognitive
manufacturing to predict patio-temporal cooperation and Self-organize
teamwork. Matheson et al. [21] reviewed the applications of
human-robot collaboration in manufacturing and analyzed the future
trends in human-robot collaboration. Also, as the enabler technology of
manufacturing system with human-robot collaboration, the concept of
human-cyber-physical systems (HCPS) [31] is discussed towards
human-centric smart manufacturing. Hietanen et al. [32] proposed a
depth-sensor and interactive Augmented Reality (AR) based model for
monitoring manufacturing process to ensure safety during human-robot
collaboration. Hashemi-Petroodi [33] focused on the design and control
of hybrid human-robot collaborative manufacturing systems, where
human and robot perform a variety of tasks (manual, automated, and
hybrid tasks) in a shared workspace. Ansari et al. [34] addressed the
collaboration issues between human and cyber physical production
system(CPPS) from the angle of complementarity whereby human
competences and CPPS autonomy together derive supplementary
capability and reciprocal learning, which focused on the dominant or
eligible conditions to solve a problem between human and CPPS.

2.3. Digital twin-driven manufacturing system and human-robot
collaboration

The development of digital twin is symbolic progress of industry 4.0,
which was proposed by Grieves in his production management lecture at
the University of Michigan [35]. In the manufacturing domain, Tao et al.
[36] proposed digital twin workshop with five dimension model as a
new paradigm for industry 4.0. Liu et al. [37] addressed the scheduling
problem of digital twin workshop, considering feature, process, and
machine tools simultaneously. Tao et al. [38] summarized the
state-of-the-art involving digital twin in industry. In addition, digital
twin is suitable for enhancing the reconfigurability of manufacturing
system. Huang et al. [18] build a digital twin of RMT for the rapidly
changing configuration of RMT. Leng et al. [39] studied the digital
twin-driven rapid reconfiguration method of manufacturing system
through open architecture model. Cai et al. [40] integrated digital twin
with AR to rapidly retrieve physical configuration into the virtual space
for optimizing the configuration of manufacturing through simulation.
As for digital twin-driven human-robot collaboration, Bilberg et al. [41]
discusses an object-oriented event-driven digital twin of a flexible as-
sembly cell coordinated with human-robot collaboration to operate
dynamic skill-based tasks allocation between human and robot consid-
ering traditional workload balance. Similarly, Lv et al. [42] proposed
digital twin-based human-robot collaboration assembly framework im-
proves the overall assembly efficiency and reduces the workload of
human, which attempts to optimize the trajectory of robots and ensure
the safety of human-robot collaboration assembly. Kousi [43] investi-
gated the design and reconfiguration of human-robot collaborative as-
sembly lines based on digital twin without consideration of the different
characteristics between operator and robot. Liu et al. [44] investigated
the cognitive digital twin-driven human-robot collaborative assembly to
promote cognition of human-centric assembly based on augmented re-
ality. Shi et al. [45] proposed a cognitive digital twin framework for
manufacturing system with human-robot collaboration based on the 5 G
communication network.

Above all, RMS is a typical paradigm for intelligent manufacturing in
the industry 4.0 era, in which the digital twin is a key enabler technology
to enhance the effectiveness of intelligent manufacturing. The intro-
duction of robot and the emergence of human-robot collaboration bring
new issues when reconfiguration of manufacturing system. However, on
the one hand, the existing studies associated with RMS generally ne-
glects the active functions of the robot during reconfiguration, on the
other hand, the investigations of human-robot collaboration focus more
on intuition recognition and cooperative action between operator and
robot. So far, the reconfiguration issue between operator and robot
considering the different characteristics is rarely mentioned in the
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Fig. 2. Reconfiguration of manufacturing system with human-robot collaboration.
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Fig. 3. Operation task classification.

existing literature, which is the gap to be filled in this paper.
3. Problem analysis

A typical manufacturing system with human-robot collaboration
consists of one machine tool, one robot, one operator and other neces-
sary components to complete a specific production task. The corre-
sponding digital twin of manufacturing system with human-robot
collaboration is shown in Fig. 1. Due to the seamless data transmission
between physical space and virtual space, digital twin of manufacturing
system with human-robot collaboration can track its operation states in
a high-fidelity way and optimize the production process efficiently.

The mission of manufacturing system is to complete production task
that can be divided into several operation tasks according to some
specific rules (e.g., Machining features, fixtures, etc.). A manufacturing
system with human-robot collaboration will complete production tasks
around the machine tools, which operator and robot will assist to
complete these processes. Different operation tasks can be assigned to
operator or robot resulting in different configurations of manufacturing
system, that is, reconfiguration of manufacturing system, as shown in
Fig. 2.
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Due to human factors and technology-driven robot, operator and
robot show different efficiency and effectiveness when completing a
specific work. In other words, operator and robot are not good at the
same work. Generally, operator is good at creative works, however,
robot is good at simple, repetitive work. The cooperation efficiency
between operator and robot depends on the operation task assignment
results, which determines the production efficiency of the corresponding
manufacturing system. When production task changes, manufacturing
system with human-robot collaboration should be reconfigured to meet
the new requirements. How to determine the operation tasks assignment
between operator and robot is the key problem to ensure the reconfi-
guration effectiveness, which will be solved in this paper by optimizing
operation tasks assignment considering the different characteristics of
operator and robot.

4. Dynamic reconfiguration optimization method

The dynamic reconfiguration of manufacturing system with human-
robot collaboration will be elaborated around operation tasks assign-
ment optimization in this section. Firstly, the necessary assumption and
nomenclature will be given. And then, the optimization model with
multiple objectives will be presented. Finally, the adopted computation
algorithm will be described in detail.

4.1. Assumption and nomenclature

To derive a simple yet insightful optimization model, the following
assumptions are made for dynamic reconfiguration of manufacturing
system with human-robot collaboration.

(1) Only the main components in manufacturing system with human-
robot collaboration are considered during optimization model-
ling, including operator, robot, and machine tools.

(2) The digital twin of manufacturing system with human-robot
collaboration is already existing. Namely, the construction of
digital twin is out of the scope of this paper and the optimization
process is performed based on the existing digital twin
framework.
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Production task changes have been already known in this paper.
One production task can be divided to several operation tasks.
The classification of operation tasks is around the human-robot
collaboration. In other words, operation task can be divided
into three types, including operation task only for operator,
operation task only for robot, and operation task for both oper-
ator and robot, as shown in Fig. 3. Operator is good at handling
complex and creative operation tasks that could be done by
operator only due to the work is out of the ability of robot,
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however, robot can execute simple and repetitive operation tasks
better. Besides, some operation tasks should be completed by
robot only (e.g. dangerous scenario, pollution, etc.).

Reconfiguration optimization is executed around the operation
task assignment among the three types. The production task and
operation tasks information are already given for optimization.
Production task dynamics is an iterative process. The dynamic
reconfiguration optimization model is constructed based on one
production task with several operation tasks.

One production task and the corresponding operation tasks
should be entirely completed in the assigned manufacturing
system.

There is an upper limit on the types of operation task assigned to
operator. Namely, operator cannot handle infinite operation
tasks due to the limitation of human factor.

In addition, the nomenclature for the optimization model is given in

below.

o The operation tasks set for operator only

R The operation tasks set for robot only

B The operation tasks set for both of operator and robot, that is, human-
robot collaboration operation tasks

N The total types set of operation task

c? The cost of operator when completing ith type of operation task

ck The cost of robot when completing ith type of operation task

A Collaboration factor. Labelling the operation task assigned to operator or
robot

u Operator factor. Counting the number of operation tasks assigned to
operator.

Taskmax The maximum types of operation task for operator

Mass An extra-large number

makespan ~ Maximum completion time

\'4 Idle time between operator and robot

Tr Operation time of operation tasks for robot only

T Operation time of robot when handling operation tasks for both operator
and robot

To Operation time of operation tasks for operator only

T9 Operation time of operators when handling operation task for both
operator and robot

TR The per operation time of robot when handling ith type of operation
tasks

17 The per operation time of operator when handling ith type of operation
tasks

D; The number of ith type of operation task

Ai Collaboration factor and Decision variable. Labelling the operation task

assigned to operator or robot.
Collaboration subtask assigned to robot

i =

}

1
{ 0, Collaboration subtask assigned to operator
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4.2. Mathematical model

The mathematical model of dynamic reconfiguration for
manufacturing system with human-robot collaboration contains three
optimization objectives, including minimum operation cost, minimum
operation time, and minimum idle time between operator and robot, as
shown in Egs. (1)-(3). In addition, the corresponding constraints can be
referred to as Eq. (4) to (11).

4.2.1. Minimize

C=>  DiCO+> " D+ " Di[ClAi+CP(1—du] €}
makespan = max (TR + Tg, To + Tg) (2)
V= |(Te+T5) = (To+T5) | ®
S.t.
O+R+B=N 4
ONR=@&0ONB=Q&BNR=Q 5)
T = ZieBDin ©)
To= ZieoDiT? @
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The first objective aims at minimizing the total operation cost of
operation tasks executed by human-robot collaboration referring to Eq.
(1). The first item of Eq. (1) denotes the total operation cost of operation
tasks that should be completed by operator only. The second item of Eq.
(1) denotes the total operation cost of operation tasks that should be
completed by robot only. The third item of Eq. (1) calculates the total
operation cost of operation tasks that can be completed by both operator
and robot. Besides, the operator factor y in the third item is used to
recognize how many types of operation tasks are assigned to operator,
including the exclusive operation tasks for operator and collaborative
operation tasks assigned to operator, which a penalty mechanism is
adopted if the task types assigned to operator exceed the upper limit
Taskmax referring to Eq. (10).

The second objective denotes the minimum of maximum completion
time of the assigned production task with specific operation tasks
referring to Eq. (2), that is, minimum of makespan. The first item of Eq.
(2) means the total operation time of robot to complete the exclusive
operation tasks for robot and the collaborative operation tasks assigned
to robot. The second item of Eq. (2) means the total operation time of
operator to complete the exclusive operation tasks for operator and the
collaborative operation tasks assigned to operator. Due to operator and
robot will be activated at the same time when a new production task
arrives, the maximum operation time of operator or robot is adopted as
makespan in this paper.

The third objective is constructed to address the idle issue between
operator and robot according to Eq. (3). The completion time of operator
and robot could be different resulting in idle time that do harm to pro-
duction efficiency promotion. Namely, the less idle time, the better
production efficiency. Here, the absolute value of the completion time
differences between operator and robot is used to calculate the idle time
as shown in Fig. 4.

There are necessary constraints for the dynamic reconfiguration
optimization model referring to Eqgs. (4)-(10). Eq. (4) means the sum-
mation of the exclusive operation tasks of operator and robot and the
collaborative operation tasks, which ensure complete assignment of all
operation tasks. Eq. (5) denotes the intersection among exclusive oper-
ation task set for operator, exclusive operation task set for robot and
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Table 1
Production task information.
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Part no. Quantity Operation task

Part 1 15 Unload from AGV (1); Workblank check (2); Upload to machine (3); Clamp part (4);
Part 2 25 Change tool (5); NC programming (6); Unload from machine (7); Burring (8); Clean (9);
Part 3 20 Inspection (10); Upload to AGV (11)
Part 4 40

collaborative operation task set is an empty set, that is, every operation
task will be assigned only once. Eqgs. (6) and (7) present calculation
details of the total operation time relevant to exclusive operation tasks
for robot and operator respectively. Eqs. (8) and (9) calculate the
operation time of collaborative operation tasks assigned to robot and
operator respectively.

4.3. Solution algorithm of optimization model

The proposed dynamic reconfiguration optimization model is typical
multiple objective optimization (MOO) problem. There are many suc-
cessful algorithms for MOO problems, including evolutionary algo-
rithms (e.g. NSGA, NSGA-II, etc.), tabu search, particle swarm
optimization, etc. NSGA-II is the most popular solution algorithm for
MOO problems in recent years [46]. NSGA-II can reduce the complexity
of non-inferior sorting genetic algorithms with high computation effi-
ciency and good convergence results. Therefore, NSGA-II is adopted in
this paper to solve the proposed dynamic reconfiguration optimization
model.

The typical procedure of NSGA-II includes seven main steps, as
shown in the following.

Step 1. Coding. A chromosome of NSGA-II means a solution of
operation task assignment, which is the combination operation task
types tagged by operator or robot referring to collaboration factor 4;. An
example is given in Fig. 5. This coding example means that the 1st, 3rd,
4th and 6th operation task (different types) are assigned to operator and
the reminder types of operation task are assigned to robot. Although the

Table 2
Classification of given operation tasks.
Operation task no. Operator only Robot only Both
1 v
2 v
3 v
4 v
5 %
6 %
7 v
8 v
9 v
10 v
11 V/
Table 3

Operation cost and time of operation tasks.

Operation task Operation task Operation cost per Operation time per

type no. unit unit
Operator  Robot  Operator  Robot
Operator only 2 12 1
6 40 4
Robot only 9 10 1.5
Both 1 24 10 2.5 2
3 36 25 3 2
4 24 15 2 1
5 60 45 5 3.5
7 36 25 3 2
8 24 15 2 1
10 12 10 1 0.5
11 24 10 2.5 2

types of operation task are denoted using a mathematical set, operation
task sort will be executed firstly for computation convenience.

Step 2. Population initialization. The initial population is generated
randomly involving Q individuals.

Step 3. Nondominated sorting and crowding distance sorting. The
initial population is divided into several fronts according to the non-
inferior solution level of each individual. When merging parent and
offspring resulting in 2Q size, the population size should be modified to
Q. The crowding distance sorting when including a specific front led to
the new population size exceeding Q. Fig. 6 shows the sorting details.

Step 4. Termination condition. If the maximum generation is
reached, the optimization process is complete, and the Pareto optimal
solution will be obtained; otherwise, switch to the next step.

Step 5. Offspring population generation. Generating offspring pop-
ulation through selection, crossover, and mutation, as shown in Fig. 7.
Firstly, tournament selection is adopted to randomly select two in-
dividuals from the parent population based on nondominated sorting
and crowding distance sorting. Secondly, binary crossover algorithm is
adopted to determine the crossover position randomly. Thirdly, poly-
nomial mutation algorithm is used to randomly change specific genes of
the parent chromosome.

Step 6. Merge parent population and offspring population. Merge the
parent population and the offspring population to obtain a new popu-
lation with the size of 2Q. Again, go back to step 3 for fast non-
dominated sorting.

The flowchart of the adopted NSGA-II for dynamic reconfiguration
optimization of manufacturing system with human-robot collaboration
is shown in Fig. 8.

5. Case study

The implementation of the proposed dynamic reconfiguration
method of manufacturing system with human-robot collaboration will
be provided in this section to validate its effectiveness, which is based on
a typical machining station consisting of one machining center, one
industrial robot and one operator. The digital twin of the machining
station is also constructed for monitoring its production activities and
optimizing its configuration dynamically, as shown in Fig. 9.

A specific part family is assigned to the machining station, as shown
in Fig. 10. The corresponding production task is shown in Table 1, where
the operation task details are given as well. The number behind the
operation task name is the label of operation tasks respectively for
computation convenience.

Considering the different characteristics of human and robot, the
operation tasks are classified into three types, including operation task
for operator only, operation task for robot only, and operation task for
both operator and robot, as shown in Table 2. In addition, the total
quantity of each operation task is 100 according to Table 1.

The operation cost per unit and operation time per unit based on the
classification of operation tasks are given in Table 3. Moreover, the
necessary information for optimization should be preset, including
Taskmax = 5, Mass = 100.

The optimization solution will be executed using NSGA-II. Preset
necessary parameter of NSGA-II, that is initial population size = 50,
Maximum iteration = 20. The computation is executed by Python on a
laptop with 2.3 GHz CPU, 16 GB RAM. The convergence process is
shown in Fig. 11, where the mean and variance of crowding distance are
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Fig. 11. Convergence process.

adopted to track the convergence process.

Pareto optimal solution can be obtained when convergence, as
shown in Fig. 12. The three objectives are adopted as the axis of Pareto
front graph, where rank 1, rank 2 and rank 3 are labeled with different
colors.

Randomly selecting two solutions from rank 1 in Fig. 12. And the
corresponding objective values and operation task assignment results
are given in Table 4.

According to the selected solution 1, operation task 1, operation task
2, operation task 6, operation task 10, and operation task 11 are assigned
to operator, and operation task 3, operation task 4, operation task 5,
operation task 7, operation task 8, and operation task 9 are assigned to
robot. Due to operation task 2 and operation task 6 should be done by
operator only, three more operation tasks are assigned to operator
without exceeding the total operation task upper limits of operator

rank3

1000

rank2
800

rank1
600

400

Vacancy(min)

£y

b 2004

0L
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1400

1300

1200 S~ <~
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t‘zA\/Iukcspnm min) fl('ost(min)

Fig. 12. Pareto optimal solution.
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Table 4
Selected solutions.

Solution  Cost Makespan  Vacancy  Operation task assignment
Operator Robot

1 24700 1100 0 1,2,6,10,11 3,4,57,8,9

2 23400 1150 50 2,5,6,10 1,3,4,7,8,9,11
Unload from AGV (1) N
Workblank check (2) Unload from machine (7)

7 NC programming (6) Upload to machine (3) Burring (8)

Inspection (10) Clamp part (4) Clean (9)

Change tool (5)

Fig. 13. Manufacturing system configuration of selected solution 1.

y Unload from machine (7)
Unload from AGV (1) Burring (8)

Upload to machine (3) Clean (9)

Clamp part (4) Upload to AGV (11)

“ Workblank check (2)

Inspection (10)
Fig. 14. Manufacturing system configuration of selected solution 2.

(Taskmax = 5). Also, the vacancy between operator and robot is zero,
which shows good collaboration efficiency between operator and robot.
The corresponding configuration of manufacturing system with human-
robot collaboration is shown in Fig. 13.

Similarly, according to the selected solution 2, operation task 2,
operation task 5, operation task 6, and operation task 10 are assigned to
operator, and operation task 1, operation task 3, operation task 4,
operation task 7, operation task 8, operation task 9, operation task 11
are assigned to robot. Due to the operation cost and time of operation
task 5 for operator being higher than robot, it is reasonable to use
operation task 5 to replace operation task 1 and operation task 11 to
obtain relatively balanced workload between operator and robot
compared with the selected solution 1. Moreover, the skill switches of
operator are less with four operation tasks in this solution, which will
promote operator efficiency as well. The corresponding configuration of
manufacturing system with human-robot collaboration is shown in
Fig. 14.

In addition, the adopted digital twin of manufacturing system with
human-robot collaboration can be used to simulate the effectiveness of
the different solutions in the virtual space. And then, the dynamic
reconfiguration decision of the manufacturing system with human-robot
collaboration can be made based on the simulation results. Finally, the
corresponding manufacturing system with human-robot collaboration
in the physical space will receive the reconfiguration solution from the
virtual space via data transmission and assign the operation tasks of new
production task between operator and robot correctly, as shown in
Fig. 15.

6. Conclusion

Digital twin-driven manufacturing system with human-robot
collaboration is the typical paradigm of intelligent manufacturing to
deal with production task fluctuation rapidly and efficiently, which
reconfiguration of manufacturing system with human-robot collabora-
tion based on dynamic task assignment between operator and robot
could be executed to promote production efficiency. Also, the digital
twin can be used to monitor production processes and improve
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Fig. 15. Reconfiguration verification process based on digital twin.

reconfiguration accuracy due to seamless data transmission between
physical space and virtual space and high-fidelity virtual model.

How to optimize the reconfiguration process of manufacturing sys-
tem with human-robot collaboration is the key problem, which the
different characteristics between operator and robot should be con-
cerned to promote production efficiency after reconfiguration. There-
fore, a dynamic reconfiguration optimization method of intelligent
manufacturing system with human-robot collaboration based on digital
twin is proposed in this paper. Firstly, a multiple objectives optimization
model is constructed to explore the best operation task assignment so-
lution between operator and robot, including minimum production cost,
minimum production time, and minimum idle time. The different
characteristics between operator and robot are considered during opti-
mization modeling, which human factor is adopted to reduce physio-
logical fatigue of operator during reconfiguration. Secondly, the typical
solution to the MOO problem is adopted in this paper to calculate the
proposed optimization model. Finally, a case study is provided to
implement the proposed dynamic reconfiguration optimization method
of intelligent manufacturing system based on digital twin. The results
show that the proposed method can assign the operation tasks to oper-
ator and robot reasonably resulting in reasonable configuration of
intelligent manufacturing system. However, the adopted manufacturing
system in this paper involves one machine tool, one operator, and one
robot only, more complex manufacturing scenarios should be studied in
future work. Besides, other operation factors of operator and robot could
affect the optimization effectiveness, which is a significant investigation
direction in future work as well.
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