Διαχείριση Δικτύων Βασισμένων στο Λογισμικό 2023-24 (DIT289)

Δρ. Ειρήνη Λιώτου

eliotou@hua.gr

28/3/2024

DNS: domain name system

- Request the URL www.someschool.edu/index.html
- The same user machine runs the client side of the DNS application.
- 2. The browser extracts the hostname, www.someschool.edu, from the URL and passes the hostname to the client side of the DNS application.
- 3. The DNS client sends a query containing the hostname to a DNS server.
- 4. The DNS client eventually receives a reply, which includes the IP address for the hostname.
- 5. Once the browser receives the IP address from DNS, it can initiate a TCP connection to the HTTP server process located at port 80 at that IP address.

DNS name resolution example

 host at cis.poly.edu wants IP address for gaia.cs.umass.edu

Iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

root DNS server

DNS records

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

type=A

- name is hostname
- value is IP address

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX

 value is name of mailserver associated with name

DNS protocol, messages

query and reply messages, both with same message format

message header

- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

2 bytes	2 bytes				
identification	flags				
# questions	# answer RRs				
# authority RRs	# additional RRs				
questions (variable # of questions)					
answers (variable # of RRs)					
authority (variable # of RRs)					
additional info (variable # of RRs)					

DNS protocol, messages

Chapter 5 Network Layer: The Control Plane

ICMP: internet control message protocol

	used by hosts & routers	Type	Code	description
	to communicate network-	0	0	echo reply (ping)
	level information	3	0	dest. network unreachable
	error reporting:	3	1	dest host unreachable
	unreachable host, network,	3	2	dest protocol unreachable
	port, protocol	3	3	dest port unreachable
	 echo request/reply (used by 	3	6	dest network unknown
	ping)	3	7	dest host unknown
	network-layer "above" IP:	4	0	source quench (congestion
	 ICMP msgs carried in IP 			control - not used)
	datagrams	8	0	echo request (ping)
		9	0	route advertisement
•	ICMP message: type, code	10	0	router discovery
	plus first 8 bytes of IP	11	0	TTL expired
	datagram causing error	12	0	bad IP header

Traceroute and ICMP

- source sends series of UDP segments to destination
 - first set has TTL = I
 - second set has TTL=2, etc.
 - unlikely port number
- when datagram in nth set arrives to nth router:
 - router discards datagram and sends source ICMP message (type II, code 0)
 - ICMP message includes name of router & IP address

when ICMP message arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

