ALayxeipLon ALKTUWV
BaclLopevwy oto
NOYLOHLKO
2025 (DIT3006)

Ap. Elpnvn Awwtou

3/4/2025

mailto:eliotou@hua.gr

Chapter 4
Network Layer:
The Data Plane

© All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

Chapter 4: outline

4.1 Overview of Network 4.4 Generalized Forward and
layer SDN
* data plane * match
* control plane * action

* OpenFlow examples of
match-plus-action in
action

Network layer

transport segment from
sending to receiving host

gala [INK o -

physical

network

data link

network
data link

network

on sending side

encapsulates segments

physical

physical network % network

data link § data link

physical

physical

physical

into datagrams

on receiving side, delivers
segments to transport " T
layer

network layer protocols
in every host, router

router examines header
fields in all IP datagrams
passing through it

network

physical

- (\WOr —

physical

\5\7 network IADAIEC]

i physical
55 5

network
data link
k‘ physical

network

Two key network-layer functions

network-layer functions: analogy: taking a trip
*Forwarding (HW): move = forwarding: process of
packets from router’s input getting through single

to appropriate router interchange

output

"Routing (SW): determine = routing: process of

route taken by packets planning trip from source

from source to destination to destination
* routing algorithms

Network layer: data plane, control plane

Data plane

" |ocal, per-router function
" determines how datagram

arriving on router input
port is forwarded to
router output port

* forwarding function

values in arriving
packet header

11—
e

Control plane
" network-wide logic

= determines how datagram is
routed among routers along
end-end path from source host
to destination host

" two control-plane approaches:

* traditional routing algorithms:
implemented in routers

* software-defined networking
(SDN): implemented in
(remote) servers

Per-router control Elane

Individual routing algorithm components in each and every
router interact in the control plane

control
plane
data
plane

values in arriving

packet heade;

XapokoTrelo MNavetmoTApio — TuAua NMANPo@opIKAg Kal TNAEPATIKAG

Logically centralized control plane

A distinct (typically remote) controller interacts with local
control agents (CAS)

— Remote Controller P—

values in arriving |
packet header

XapokoTrelo MavetmoTAHIo — TuApa MANPo@opIKAG Kal TNAEUATIKAG

Separation of Data Plane & Control Plane

OpenFlow Controller

Control Plane

OpenFlow
protocol

Control Plane

=

Traditional Switch OpenFlow Switch

Forwarding Plane Forwarding Plane

SDN has decoupled both the hardware & software parts. You can buy the hardware from one
vendor or even use merchant silicon devices. Software part can be obtained from other vendors or
can use Open Source control planes which are free available.

by Vipin Gupta, Linux & Cloud Engineer, Udemy

https://www.udemy.com/course-dashboard-redirect/?course_id=1799014

Problems in Traditional Network Devices

They are vendor specific

Hardware & Software is bundled together

Very costly

New features can only be added at the will of the vendor. Client can only request the features, vendor will
decide whether to add those features or not & the time frame in which these features will become

available is at the sole discretion of the vendor.

Devices are function specific. You can not make your router behave like load balancer or make your switch
behave like a firewall or vice versa.

If your network consists of hundred of these devices, each device has to be configured individually. There
is no centralized management.

Innovations are very rare. Last 3 decades have not seen many innovations in networking. Whereas

Compute and storage industry has seen drastic changes such as compute virtualization & storage
virtualization. Networking has not been able to keep pace with other ingredients of Cloud Computing.

by Vipin Gupta, Linux & Cloud Engineer, Udemy

https://www.udemy.com/course-dashboard-redirect/?course_id=1799014

Network service model

Q: What service model for “channel” transporting
datagrams from sender to receiver?

example services for example services for a flow
individual datagrams: of datagrams:

= guaranteed delivery " in-order datagram

= guaranteed delivery with delivery
less than 40 msec delay = guaranteed minimum

(bounded delay) bandwidth to flow

Network service model

Quality of Service (QoS) Guarantees ?

Network Service
Architecture Model Bandwidth Loss Order Timing
Internet best effort none no no no

— Internet ‘“best effort” service model

No guarantees on:
i. successful datagram delivery to destination
ii. timing or order of delivery
iii. bandwidth available to end-end flow

Reflections on best-effort service

= simplicity of mechanism has allowed Internet to be
widely deployed adopted

= sufficient provisioning of bandwidth allows performance
of real-time applications (e.g., interactive voice, video)
to be “good enough” for “most of the time”

" replicated, application-layer distributed services
(datacenters, content distribution networks) connecting
close to clients’ networks, allow services to be provided
from multiple locations (e.g. Netflix)

" congestion control of “elastic” services helps (TCP)
It's hard to argue with success of best-effort service model

Chapter 4: outline

4.1 Overview of Network 4.4 Generalized Forward and
layer SDN
* data plane * match
* control plane * action

* OpenFlow examples of
match-plus-action in
action

Generalized forwarding: match plus action

Review: each router contains a forwarding table (aka: flow table)
" “match plus action” abstraction: match bits in arriving packet, take action
* destinatiorrbased forwarding: forward based on dest. IP address
1

packet header

° general,ze .Iunugn:gub
* many header fields can deternaim
* many actions possible: drop/copy/modify/log packet

.

forwarding table

(aka: flow table) . ' |+i ‘+' |¢' w

Generalized Forwarding and SDN

Each router contains a flow table that is computed and
distributed by a logically centralized routing controller

logically-centralized routing controller

control plane

data plane
local flow table

headers |counters |actions
|| [X N] | | [X N] | |...||
o000 [X N]

values in arriving
packet’ s header

OpenFlow data plane abstraction

= flow: defined by header fields values (in link-,
network-, transport-layer fields

" generalized forwarding: simple packet-handling rules
e Pattern: match values in packet header fields

* Actions for matched packet: drop, forward, modify matched
packet or send matched packet to controller

* Priority: disambiguate overlapping patterns
e Counters: #bytes and #packets

Ea
* . wildcard

Flow table in a router (computed and distributed by
controller) define router’s match+action rules

OpenFlow data plane abstraction

= flow: defined by header fields values (in link-,
network-, transport-layer fields

" generalized forwarding: simple packet-handling rules
e Pattern: match values in packet header fields

* Actions for matched packet: drop, forward, modify matched
packet or send matched packet to controller

* Priority: disambiguate overlapping patterns
e Counters: #bytes and #packets

Ea
* . wildcard

1. src=1.2.*%.*, dest=3.4.5.* = drop
2. src=**** dest=3.4.%.* - forward(2)
3. src=10.1.2.3, dest=*.*.*.* = send to controller

OEenFIowz Flow Table Entries

Rule (Match)

Action

Stats

Header fields to match:

Packet + byte counters

1. Forward packet to port(s)

2. Encapsulate and forward to controller
3. Drop packet

4. Modify Fields

Switch
Port

VLAN
ID

MAC
src

MAC
dst

Eth
type

IP
Src

P
Dst

P
Prot

TCP
sport

TCP
dport

Link layer

Network layer

Transport layer

Examples

Destination-based forwarding;

Switch MAC [MAC [Eth LAN |IP |P IP TCP TCP Action
Port rc dst ype [ID Src Dst Prot [sport [dport
* * * * * * 51.6.0.8 * * * port6
IP datagrams destined to IP address 51.6.0.8 should
. be forwarded to router output port 6
Firewall:
Switch MAC [MAC [Eth LAN |IP IP IP TCP [TCP Action
Port rc dst ype (D Src Dst Prot [sport [dport
* * * * * * * * * 22 drop
do not forward (block) all datagrams destined to TCP port 22
Switch IMAC [MAC [Eth VLAN (IP |P IP TCP TCP Action
Port rc dst ype [ID Src Dst Prot [sport (dport
% % * * * 128.119.1.1 % * * * drop

do not forward (block) all datagrams sent by host 128.119.1.1

Examples

Destination-based layer 2 (switch) forwarding:

Switch MAC [MAC [Eth LAN |[IP IP IP TCP [TCP Action
Port rc dst ype [ID Src Dst Prot [sport [dport
S T Rt

layer 2 frames from MAC address 22:A7:23:1 1:E1:02
should be forwarded to output port 3

OpenFlow abstraction

= match+action: unifies different kinds of devices

= Router =" Firewall
* match: longest * match: IP addresses
destination IP prefix and TCP/UDP port
* action: forward out numbers
a link * action: permit or
= Switch deny
* match: destination = NAT
MAC address * match: IP address
* action: forward or and port
flood * action: rewrite

address and port

-Qpen FIOW exam Ie Example: datagrams from

hosts h5 and h6 should
be sentto h3 or h4, via sl

match action and from there to s2
IP Src = 10.3.*.* '
IP Dst = 10.2.*» | forward(3)
Host h4
10.2.0.4
3
n ‘f Host h2
“me 10102 T match action
match action Host h3 ingress port = 2
. 10.2.0.3 forward(3
Ingress port =1 |IP Dst = 10.2.0.3 (3)
IP Src = 10.3.*.* | forward(4) ingress port = 2
P Dst = 10.2.%.* IP Dst = 10.2.0.4| loward()

Manipulation of Flow Table Entries for Creating Network
Applications

Ingress | MAC | MAC Eth | VLAN [1p P TCP TCP
Port sIe dst type ID SIC dst sport dport Action
Flow
Switching Portl 00:..:01 00:..:03 0800 vlan2 10.0.0.1 10.0.0.3 35554 80 port2
Firewall * * % * * % * * 23 d]’l)p
Switching * * 00:..:04 * o, * * * * * portd
Routing * * * ¥ * * 10.0.0.5 ® * ports
Load * * 00:..:fe 0x800 | vlanl 10.0.03(10.0.0.254 # 80 mod_nw_dst|
Balancer portl
Packet In
(table miss | * ¥ * * * * * * * controller
entry)
Flow Entries in Flow Table

by Vipin Gupta, Linux & Cloud Engineer, Udemy

https://www.udemy.com/course-dashboard-redirect/?course_id=1799014

	Slide 1: Διαχείριση Δικτύων Βασισμένων στο Λογισμικό 2025 (DIT306)
	Slide 2
	Slide 3
	Slide 4: Network layer
	Slide 5: Two key network-layer functions
	Slide 6: Network layer: data plane, control plane
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Network service model
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: OpenFlow data plane abstraction
	Slide 18: OpenFlow data plane abstraction
	Slide 19: OpenFlow: Flow Table Entries
	Slide 20
	Slide 21
	Slide 22: OpenFlow abstraction
	Slide 23: OpenFlow example
	Slide 24

