POX Controller

leln Gupta vipin2411@gmail.com www.linuxexpert.in

BE,RHCE,CEH,CCNA,MCSE,MCSA Mobile: 93563-10379

POX Controller

OpenFlow
Protocol

S

OpenFlow Switch

Flow Table

Rule_I Action 1 Counters

Rule y Actiony Counters

POX Controller

Flow Table

.-V

_Rule ; Action ; Counters _

Rule ! Action | Counters

Controller in a software defined network (SDN) is the
brain of the network. POX is an open source controller
for developing SDN applications. POX is Python based
Controller.

POX controller provides an efficient way to implement
the OpenFlow protocol which is the de facto
communication protocol between the controllers and the
switches. Using POX controller you can run different
applications like hub, switch, load balancer and firewall.

Main Functions & Classes of POX Controller

This class describes packet header fields and an input port to match on. All fields are optional. Fields not
specified will be treated as wildcard & will match on anything. Some of the fields are:

dl_type: It is used to specify the whether the packet is arp (0x806) or ip(0x800) type
dl_src,dl_dst: for specifying layer 2 source & destination mac address.
in_port: the port through which packet came
tp_dst: for specifying tcp/udp destination port
nw_src, nw_dst: for specifying IP addresses.
example 1: create a match for packets arriving on port 1
match=of.ofp_match()
match.in_port=1

example 2: for creating match forI/gackets arriving on port 2 & going towards port 80 of host 10.0.0.4
match=of.ofp_match()
match.in_port=2
match.dl_type=0x800
match.nw_dst=10.0.0.4
match.tp_dst=80

Eirini
Typewritten Text
nw_src, nw_dst: for specifying IP addresses.

Eirini
Typewritten Text
IP

Packet in

Main Functions & Classes of POX Controller

POX OpenFlow Controller

OpenFlow
Protocol

Response

Contact controller when no
match found in flow tables
___________________+

G ——— ==

Flow Tables

>| Execute Actions l

OpenFlow Switch

Packet out

L=

is used for sending messages (instructions)

This is used with ofp_packet out & ofp flow _mod
class. Here we have to specify the port through which we want to send
the packet out.

example 1: create an output action that will send the packet out from
port 4.
output_action=of.ofp_action_output(port=4)

example 2: create an output action that will send the packet to the
controller.
output_action=of.ofp_action_output(port=0f. OFPP_CONTROLLER)

example 3: create an output action that will send the packet out from all
port except in_port.
output_action=of.ofp_action_output(port=0f.OFPP_FLOOD)

Main Functions & Classes of POX Controller

It is openflow message(instruction) sent by the controller to the switch to install flow entries into
flow table. Incoming packets are matched against these flow entries & action is performed on these packets as
specified in flow entries. The main fields of ofp_flow_mod message are:

hard_timeout: After how many seconds the flow entry will be removed. Default is no timeout.
idle_timeout: After how many seconds the idle flow entries will be removed. Default is no timeout.
priority: relative importance of flow entries.

actions: list of actions to be performed on matched entries.

buffer_id: The buffer id of packet.

in_port: The port at which the packet arrived.

match: for specifying ofp_match. Default is match all.

example 1: create a flow modification message that sends ip packets having source ip address 10.0.0.1 from port 1
to port 3.

msg=of.ofp_flow_mod()

msg.match.in_port=1

msg.match.dl_type=0x800

msg.match.nw_src=10.0.0.1

msg.actions.append(of.ofp_action output(port=3))

Main Functions & Classes of POX Controller

It is openflow message sent by the controller to the switch to send the packet out. The packet sent
out could be the one that was received by the switch & forwarded to the controller after buffering or the packet
created by the controller itself. The main fields are:

data: raw data that you want to send. No need if sending buffered data.
buffer_id: The buffer id of the packet

action: list of actions
in_port: the port on which the packet arrived. Specify OFPP_NONE for packet created at controller.

ofp_match attributes:

Attribute Meaning

in_port Switch port number the packet arrived on
dl_src Ethernet source address

dl_dst Ethernet destination address

dl_vlan WLAN ID

dl_vlan_pcp | VLAN priority

dl_type Ethertype / length (e.g. 0x0800 = IPv4)
nw_tos IP TOS,/DS bits

nw_proto IP protocol (e.g., 6 = TCP) or lower 8 bits of ARP opcode
W _STC IP source address

nw_dst IP destination address

tp_stc TCP/UDP source port

tp_dst TCP/UDP destination port

Attributes may be specified either on a match object or during its initialization. That is, the

following are equivalent:

my _match = of.ofp match(in port = 5, dl_dst = EthAddr("81:02:83:84:85:86"))
#.. or ..
my _match = of.ofp match()

my match.in port = 5
my match.dl dst = EthAddr("01:82:83:84:85:86")

.| r

Output

Forward packets out of a physical or virtual port. Physical ports are referenced to by their integral
value, while virtual ports have symbclic names. Physical ports should have port numbers less than

O=FFQ0O.

Structure definition:

class ofp_action_output (object):
def init (self, **kw):
self.port = None # Purposely bad -- require specification

* port (int) the output port for this packet. Value could be an actual port number or one of the

following virtual ports:

» OFPP_IN_PORT - Send back out the port the packet was received on. Except possibly
OFPP_NORMAL, this is the only way to send a packet back out its incoming port.

» OFPP_TABLE - Perform actions specified in flowtable. Note: Only applies to
ofp_packet_out messages.

» OFPP_NORMAL - Process via normal L2,/L3 legacy switch configuration (if available -
switch dependent)

* OFPP_FLOQOD - output all openflow ports except the input port and those with flooding
disabled via the OFPPC_NO_FLOOD port config bit (generally, this is done for STF)

» OFPP_ALL - output all openflow ports except the in port.

* OFPP_CONTROLLER - Send to the controller.

» OFPP_LOCAL - Output to local openflow port.

» OFPP_NONE - Qutput to no where.

ofp flow mod - Flow table modification

class ofp_flow_mod (ofp header):
def init (self, **kw):
ofp_header. init_ (self)
self.header type = OFPT_FLOW MOD
if 'match’ in kw:
self.match = None
else:
self.match = ofp_match()
self.cookie = 8
self.command = OFPFC_ADD
self.idle timeout = OFP_FLOW_PERMANENT
self.hard_timeout = OFP_FLOW_PERMANENT
self.priority = OFP_DEFAULT_PRIORITY
self.buffer_id = None
self.out_port = OFPP_NONE
self.flags = @
self.actions = []

cookie (int) - identifier for this flow rule. (optional)

command (int) - One of the following values:

* OFPFC_ADD - add a rule to the datapath (default)

OFPFC_MODIFY - modify any matching rules

OFPFC_MODIFY_STRICT - medify rules which strictly match wildcard values.
OFPFC_DELETE - delete any matching rules

OFPFC_DELETE_STRICT - delete rules which strictly match wildcard values.

idle_timeocut (int) - rule will expire if it is not matched in ‘idle_timeout’ seconds. A value
of OFP_FLOW/ PERMANENT means there is no idle_timeout (the default).
hard_timeout (int) - rule will expire after ‘hard_timeout’ seconds. A value

of OFP_FLOW _PERMANENT means it will never expire (the default)
priority (int) - the priority at which a rule will match, hicher numbers higher priority. Note:

Exact matches will have highest priority.
buffer_id (int) - A buffer on the datapath that the new flow will be applied to. Use None for

none. Not meaningful for flow deletion.
out_port (int) - This field is used to match for DELETE commands.OFPP_NONE may be

used to indicate that there is no restriction.

flags (int) - Integer bitfield in which the following flag bits may be set:

» OFPFF_SEND_FLOW_REM - Send flow removed message to the contreller when rule
expires

» OFPFF_CHECE_OWVERLAP - Check for overlapping entries when installing. If one
exists, then an error is send to controller

» OFPFF_EMERG - Consider this flow as an emergency flow and only use it when the

switch controller connection is down.

* actions (list) - actions are defined below, each desired action object is then appended to this
list and they are executed in order.

* match (ofp_match) - the match structure for the rule to match on (see below).

Example: Installing a table entry

Traffic to 192.168.181.181:88 should be sent out switch port 4

One thing ot a time...

msg

msg.
.match.dl type = @x380

msg

msg.
msg.
msg.

= of.ofp _flow mod()
priority = 42

match.nw_dst = TPAddr({"192.168.181.181")
match.tp dst = 8@
actions.append{of.ofp_action output(port = 4))

self.connection.send(msg)

Same exact thing, but in a single Lline...
self.connection.send(of.ofp flow mod(action=of.ofp action output(port=4

priority=42,

match=of.ofp _match{ dl_type=0x888,
nw_dst="192.168.
tp _dst=88)))

Example: Clearj_ng tables on all switches

create ofp flow mod message to delete all flows
(note that flow mods match all flows by default)

msg

= of.ofp flow mod(command=of.0FPFC_DELETE)

iterate over all connected switches and delete all their flows

for

connection in core.openflow.connections: # connections.values() before

connection.send(msg)
log.debug("Clearing all flows from %s." ¥ (dpidToStr{connection.dpid),))

4

_ - Sending packets from the switch

The main purpose of this message is to instruct a switch to send a packet (or enqueue it). However

it can also be useful as a way to instruct a switch to discard a buffered packet (by simply not

specifying any actions).

attribute | type default notes

buffer_id | int/None WNone 1D of the buffer in which the packet is
stored at the datapath. If you're not
resending a buffer by ID, use None.

in_port int OFPP_NONE | Switch port that the packet arrived on if
resending a packet.
actions list of [] If you have a single item, you can also
ofp_action_X33X specify this using the named parameter

“action” of the initializer.

data bytes / ethernet / The data to be sent (or None if sending
ofp_packet_in an existing buffer via its buffer_id).

If you specify an ofp_packet_in for
this, in_port, buffer_id, and data will
all be set correctly - this is the easiest way
to resend a packet.

Note:

If you receive an ofp_packet_in and wish to resend it, you can simply use it as the data

attribute.

