Creating Network Applications
without using Controller

leln Gupta vipin2411@gmail.com

BE,RHCE,CEH,CCNA MCSE,MCSA Mobile: 93563-10379

Using reference/OVS Controller/Remote Controller

root@Cmininet-vm:"# mn —controller ref

se¢ Creating network
% Adding controller
¢ Adding hosts:

hl h2

sxx Adding switches:

sl

s Adding links:

(hl, s1) (hZ, sl)

s Conf iguring hosts
hl h2

sxx Starting controller
cO

s Starting 1 switches
- 3 g

sx Starting CLI:
mininet>

mininet> pingall

sxx Ping: testing ping reachability

hl -> hZ
hZ -> hl

s Results: 04 dropped (2/Z2 received)

mininet> _

Openflow switches are of two types, physical and virtual
switches. By default, Mininet creates virtual switch in
OpenFlow mode. We need OpenFlow controller to
manage and control OpenFlow switch. Mininet supports
many controllers, such as OpenFlow reference controller,
OVS controller and less used NOX Classic. You can choose
OpenFlow controller simply by using the mn command.

root@mininet-um:"# ps —-ax igrep controller
2031 tty2 S+ 0:00 susrsbin/python susr/local/bin/mn —— ref
2104 pts/2 S+ 0:00 -y ptcp:6653

mn --controller ref

Eirini
Typewritten Text
s

Eirini
Typewritten Text
s

Using reference/OVS Controller/Remote Controller

root@mininet-um:"# mn ——controller ovsc

% Creating network
sxx Adding controller
sexx Adding hosts:

hl hZ

s Adding switches:

sl

sve Adding links:

(hl, s1) (hZ, s1)

s Conf iguring hosts
hl hZ

swxx Starting controller
cO

s Starting 1 switches
sl ...

s Starting CLI:
mininet>

mininet> pingall

s Ping: testing ping reachability

hl -> hZ
h2 -> hl

s Results: 04 dropped (272 received)

mininet> _

mn --controller ovsc

root@mininet-um:"# ps —-ax igrep controller

2309 tty2
2377 ptss2
2440 ttyl

S+
S+
S+

0:00 susrsbin/python susr/local/bin/mn —
0:00 ovs- -vu ptcp:6653
0:00 grep ——color=auto

ousC

Default Controller

root@mininet-um:"# mn
s Creating network
s Adding controller
s Adding hosts:

hl h2
s Adding switches:
sl

s Adding links:

(hl, s1) (hZ, s1)

s Conf iguring hosts

hl hZ2

¢ Starting controller

cO

s Starting 1 switches

81 s

s Jtarting CLI:

mininet>

mininet> pingall

s Ping: testing ping reachability
hl -> hZ

hZ -> hil

s Results: 04 dropped (2/Z2 received)
mininet>

#mn

root@mininet-um:"# ps —-ax igrep controller

1793 pts/2

3+ 0:00

ovs-vsctl show
(gives information about the open vswitch s1)

root@mininet-um:"# ovs-vsctl show

-vu ptcp:6653

918037ec-b307-45d7-a?5a—f 1ac4337d135
Bridge “s1"
Controller "tcp:127.0.0.1:6653"

is_commected: true
Controller “ptcp:6654"
fail _mode: secure
Port “si1-eth2"
Interface “sil-eth2"
Port “sl-ethl"
Interface “sl-ethl"
Port “s1"
Interface "“s1"
type: internal

ovs_version: "2.0.2"
root@mininet-um:"#

Default Controller

root@mininet-um:"# ouvs-ofctl show si
OFPT_FEATURES_REPLY (xid=0x2): dpid:0000000000000001
n_tables:254, n_buffers:256

capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEU
actions: OUTPUT SET_ULAN_VID SET_ULAN_PCP STRIP_VULAN
_NW_TOS SET_TP_SRC SET_TP_DST ENQUEUE

1(s1-ethl): addr:fa:a4:90:bf :1e:f4
conf ig: 0
state: 0
current: 10GB-FD COPPER

speed: 10000 Mbps now, 0 Mbps max

2(s1-eth2): addr:b6:98:29:d7:61:68
config: 0
state: 0
current: 10GB-FD COPPER

speed: 10000 Mbps now, O Mbps max

LOCAL(s1): addr:da:af:0b:30:e2:40
config: 0
state: 0

speed: O Mbps now, O Mbps max
OFPT_GET_CONFIG_REPLY (xid=0x4): frags=normal miss_s
root@mininet-um:™#
root@mininet-um:"# ous-ofctl dump-flous sl
NXST_FLOW reply (xid=0x4):
root@mininet-um:"#

ovs-ofctl show s1
(shows information about flow tables and ports)

mininet> hl ping -cZ2 h2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=2.00 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=1.67 ms

ovs-ofctl dump-flows s1
(gives information about flow table entries)

root@nininet-un:"% ovs-ofctl dump-flous sl
NXST_FLOY reply (xid=0x4):

cookie=0x0, duration=1.416s, table=0, n_packets=1, n_bytes=4Z2, idle_tineout=60, idle_age=1, priorit
y=65535,arp, in_port=2,vlan_tci=0x0000,d1_src=b2:f7:37:66:7b:18,d]1_dst=56:e2:23:79:ae:db,arp_spa=10.0
0.2,arp_tpa=10.0.0.1,arp_op=1 actions=output:1

cookie=0x0, duration=1.415s, table=0, n_packets=1, n_bytes=42, idle_tineout=60, idle_age=1, priorit
y=63535,arp, in_port=1,vlan_tci=0x0000,d]1_src=56:e2:23:79:ae:db,d]_dst=bZ:f7:37:66:7b:18,arp_spa=10.0
0.1,arp_tpa=10.0.0.2,arp_op=2 actions=output:Z

cookie=0x0, duration=6.43s, table=0, n_packets=Z, n_bytes=196, idle_timeout=60, idle_age=5, priorit
y=65535, icmp, in_port=Z,vlan_tci=0x0000,d1_src=bz:{7:37:66:7b:18,d]1_dst=56:e2:23:79:ae:db,nw_src=10.0
.0.2,nu_dst=10.0.0.1,nw_tos=0, icmp_type=0, icmp_code=0 actions=output:1

cookie=0x0, duration=5.417s, table=0, n_packets=1, n_bytes=38, idle_timeout=60, idle_age=5, priorit
y=65535, icmp, in_port=1,vlan_tci=0x0000,d1_src=b6:e2:23:79:ae:db,d]_dst=b2:f7:37:66:7b:18,nu_src=10.0
0.1,nu_dst=10.0.0.2,nw_tos=0, icmp_type=8, icmp_code=0 actions=output:2
root@mininet-um:"#

Using Remote Controller

root@mininet-um:"# mn ——controller remote
se¢ Creating network

s Adding controller

Unable to contact the remote controller at 127.0.0.1:6653
Unable to contact the remote controller at 127.0.0.1:6633
Setting remote controller to 127.0.0.1:6653
sx Adding hosts:

hl hZ2

sx Adding switches:

sl

sexx Adding links:

(hl, s1) (h2, s1)

sxx Conf iguring hosts

hl h2

s Starting controller

cO

sxx Starting 1 switches

s1 ...

s Starting CLI:

mininet>

mininet> pingall

sxx Ping: testing ping reachability

hi > X

hZ2 -> X

»xx Results: 100« dropped (0/2 received)
mininet>

Since we are not running any controller, hosts will not be
able to ping with each other.

root@nininet-um:"# ps -ax igrep controller
2961 ttyz S+ 0:00 susr/binspython susr/local/bin/mn -- renote

In Mininet network, switches can be connected to
a remote controller. The syntax is

mn --controller=remote, ip=[controller IP],
port=[controller listening port]

#mn --controller remote

(This command createsa topology that contains 2
hosts, single open vswitch & point to the remote
controller running on localhost)

Eirini
Typewritten Text
s

Without Controller

root@mininet-uvm:"# mn ——controller none
s Creating network
s Adding controller

s Adding hosts: Here we are creating topology without specifying any
hl hZ controller, hosts will not be able to ping with each other.
s Adding switches:

sl

s Adding links:
(hl, s1) (hZ, s1)

sxx Conf igur mg hosts root@mininet-um:"# ps -ax igrep controller
hi h2 3395 ttyl S+ 0:00 susr/binspython susr/local/bin/mm — none

s Jtarting controller

s Jtarting 1 switches

sl ...

s0¢ Starting CLI:

mininet>

mininet> pingall

s Ping: testing ping reachability

hi -> X

hg -> X

s Results: 100# dropped (0/2 received)
mininet>

Using ovs-ofctl

root@mininet-um:"# ovs-ofctl dump-flows tcp:127.0.0.1:6634
ovs-ofctl: commecting to tcp:127.0.0.1:6634 (Conmection refused)

root@mininet-um:"#

root@mininet-vm:"# ovs-ofctl dump-flouws tcp:127.0.0.1:6654

NXST_FLOW reply (xid=0x4):
rootCmininet-uvm:"#

ovs-ofctl is a command-line utility that sends basic
OpenFlow messages to a switch. It communicates
directly with a switch and does not need a controller.
It is especially useful for debugging, viewing flow
state and flow counters.

To obtain this information you can query the switch
on port 6654. In the beginning, the port used was
6634, but now it has been allocated 6654 port. It
gives error when you try to connect on port 6634.
You can also add/delete flow table entries using this
utility.

root@mininet-um:"# ovus-ofctl show tcp:127.0.0.1:6654
OFPT_FEATURES_REPLY (xid=0x2): dpid:0000000000000001
n_tables:254, n_buffers:256
capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP
actions: OUTPUT SET_VLAN_VID SET_ULAN_PCP STRIP_VULAN SET_DL_SRC SET_DL_D:
_NW_TOS SET_TP_SRC SET_TP_DST ENQUEUE

1(sl-ethl): addr:1e:96:0a:d4:fc:ad

conf ig: 0
state: 0
current: 10GB-FD COPPER

speed: 10000 Mbps now, 0 Mbps max
Z2(s1l-eth2): addr:ba:92:49:6e:af :b9

conf ig: 0
state: 0
current: 10GB-FD COPPER

speed: 10000 Mbps now, O Mbps max
LOCAL(s1): addr:fe:12:46:2e:36:45

conf ig: 0

state: 0

speed: 0 Mbps now, O Mbps max
OFPT_GET_CONFIG_REPLY (xid=0x4): frags=normal miss_send_len=0
root@mininet-um:™#
root@mininet-um:"# ovs-ofctl]l show tcp:127.0.0.1:6634
ovs-ofctl: commecting to tcp:127.0.0.1:6634 (Conmection refused)
root@mininet-um:"#

Hub Application using ovs-ofctl

leln Gupta vipin2411@gmail.com

BE,RHCE,CEH,CCNA MCSE,MCSA Mobile: 93563-10379

Adding flow entries for hub

Controller

A
|
|
|
|
!

A 4

OpenFlow

Add flow entries using ovs-ofctl instead of controller

Flow Entry: action=flood

port 1 port 2 port 3 port 4
1. | o’ I. I.'

| | | |

| | | |

I I I I

| | |

! / \
h1 h2 h3 h4

10.0.0.1 10.0.0.2 10.0.0.3 10.0.0.4 IP

00:00:00:00:00:01

00:00:00:00:00:02 00:00:00:00:00:03

00:00:00:00:00:04 MAC

Network applications such as hub, switch, router can be created
using mininet & ovs-ofctl. The ovs-ofctl can be used to create more
complex applications like firewall and load balancer. Now we are
going to use “ovs-ofctl” for converting our dump simple ovs
datapath into useful devices such as hub, switch and firewall.

If flow table contains a flow entry which containsthe action to flood
the packet that arrives at specific port of forwarding device, then
that forwarding device behaves like a hub.

Figure shows all hosts belongs to the same network. when host hl
wants to send a packet to host h4, then it first sends a packet to
forwarding device at port 1. When a packet arrives at port 1, then it
is matched against flow entry. When match is found, then it is
flooded to all ports except the incoming port according to action
specified in flow entry.

Eirini
Typewritten Text
s

Step 1: Create Topology

root@mininet-vm:"# mn ——mac ——topo single,4 ——controller none
sxx Creating network

s»% Adding controller

s Adding hosts:

hl hZ h3 h4

sexx Adding switches:

<1 = Create mininet topology consisting of 1 switch & 4 hosts.
s)ex Adding links: We do not want to use any controller so we have

(hl, s1) (hZ, s1) (h3, s1) (h4, s1)

s Configuring hosts specified the option “--controller none”.

hl hZ h3 h4

»xx Starting controller You can use the following command for creating required
»xx Starting 1 switches topology.

sl ...

ssex Starting CLI: # mn --mac --topo single,4 --controller none

mininet>

mininet> hl ping h2 o .

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data. on mininet prompt, try to ping h2 from h1. As can be
From 10.0.0.1 icmp_seq=1 Destination Host Unreachable seen, we are not able to ping.

From 10.0.0.1 icmp_seq=Z2 Destination Host Unreachable

Step 2: Add Flow

root@mininet-um:"# ovs-ofct]l dump-flouws si
NXST_FLOW reply (xid=0x4):
root@mininet-um:™#
root@mininet-um:"# ovs-ofctl add-flow sl1 actions=flood
root@Pmininet-um:™#
root@mininet-um:"# ovs-ofctl dump-flows si
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=6.031s, table=0, n_packets=0, n_bytes=0, idle_age=6, actions=FLOOD
root@mininet-uvm:™#

Before adding flow, check the flow by using command
ovs-ofctl dump-flows s1
(it is not showing any rules)

ovs-ofctl add-flow s1 actions=flood
(Now add flow entry by using the “ovs-ofct!” utility. Add flow entry by specifying action as “flood”)

III

now rules are visible on using “ovs-ofctl” with option “dump-flows”.

Step 3: Checking Connectivity

mininet> hl ping -c2 hZ

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl1=64 time=0.851 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl1=64 time=0.071 ms

-—— 10.0.0.2 ping statistics —-

2 packets transmitted, 2 received, 0% packet loss, time 1004ms
rtt minsavg/max/mdev = 0.071,0.461,0.851/0.390 ms
mininet>

mininet>

mininet> pingall

ssx Ping: testing ping reachability

hli -> hZ h3 h4

hZ2 -> hl h3 h4

h3 -> hl hZ2 h4

h4 -> hl h2 h3

sxx Results: 0z dropped (12/12 received)

mininet>

mininet>

As can be seen, now hl is able to ping to h2 & h3 is able to ping h4.
The option “-c2” specified with the ping commands tell it to send only
2 packets. You can also use pingall command to test the connectivity.

Step 4: Verify Hub Behavior

mininet> xterm hl h2 h3 h4
mininet>

% Node: hl (on mininet-vm) -/ 0/ x /| X Node: h2 (on mininet-vm) |- |0/ x|
root@mininet-vm:"# [] root@mininet-vm:“# []

LSS "\ Sssinii———————-——0——=". — |
Node: h4 (on mininet-vm) - | L Node: h3 (on mininet-vm) |- /[0 X/
root@nininet-vm:“# | root@mininet-vm:# []

There is another way by which you can check the functionality. Spawn x terminals by running the command
“xterm h1 h2 h3 h4” on mininet prompt. It will open x terminals as shown in screenshot.

Step 5: Verify Hub Behavior

x Node: hl (on mininet-vm)]_HDHxI

I Node: h2 (on mininet-vm) l_[lnllxl

root@mininet-vm:“# ping 10,0,0,2[]

Node: h4 (on mininet-vm) - 0 %X
root@mininet-vm:“# tcpdump -i hd-ethof]

We will use “tcpdump” utility for
capturing the traffic on hosts h2,
h3 & h4. We will ping from host hl
to host h2 (10.0.0.2).

root@mininet-vm:“# tcpdump —i h2-etho[]

L Node: h3 (on mininet-vm) (- |0/ x|

rootBmininet-vm:“# tcpdump —i h3-etho[]

Type the following command on different hosts.

host command

h2 tcpdump -i h2-ethO
h3 tcpdump -i h3-ethO
h4 tcpdump -i h4-ethO

h1l ping 10.0.0.2

-

X

Node: hl (on mininet-vm)

Step 6: Verify Hub Behavior

EEEI) .

Node: h2 (on mininet-vm) EEE)

1 rootBmininet-vm:“# ping 10.0,0,2
PING 10,0,0,2 {10,0,0,2) 56(84) bytes of data.
| B4 bytes from 10,0,0,2:
| B4 bytes from 10,0,0,23

64 bytes from 10,0,0,2:
64 bytes from 10,0,0,2:
26

--- 10,0,0,2 ping statistics -—-

rootBmininet-vm:"“#

icmp_seq=1 ttl=64 time=2,04 ms
icmp_seq=2 ttl=64 time=0,105 ms
icmp_seq=3 ttl=64 time=0,108 ms
icmp_seq=4 ttl=64 time=0,104 ms

4 packets transmitted, 4 received, OZ packet loss, time 3001lms
rtt minfavg/max/mdev = 0,104/0,591/2,047/0,840 ms

listening on h2-eth0, link-type EN1OMB (Ethernet), capture size 85535 bytes
23:25:03,160776 ARP, Request who-has 10,0,0,2 tell 10,0,0,1, length 28
23:%3:03.180838 ARP, Reply 10,0,0,2 is-at 00:00:00:00:00:02 {oui Ethernet), leng
th
23:25:03,161972
h B4
23:25:03,162009
64

23325:04,162345
h 64
23:25:04,162381
64

23:25:05,161383
h 64
23:25:05,161420
64
23:25:06,161336
h 64

IP 10,0,0.1 > 10,0,0,2
1P 10,0,0.2 > 10,0,0,1:
IP 10,0,0,1 > 10,0,0,2:

ICMP echo request, id 1565, seq 1, lengt
ICHP echo reply, id 1565, seq 1, length
ICHP echo request, id 1565, seq 2, lengt
IP 10,0,0,2 > 10,0,0,1: ICMP echo reply, id 1565, seq 2, length
IP 10,0,0,1 > 10,0,0,2: ICHP echo request, id 1565, seq 3, lengt

IP 10,0,0.2 > 10,0,0.1:

1P 10,0,0.1 > 10,0,0,2:
23:25:06,161433 1P 10,0,0,2 > 10,0,0.1:
32225:08.173339 ARP, Request who-has 10,0,0.1 tell 10,0,0,2, length 28

23:25:08,173414 ARP, Reply 10,0,0,1 is-at 00:00:00:00:00:01 (oui Ethernet), leng
th 28
0

ICHP echo reply, id 1565, seq 3, length
ICMP echo request, id 1565, seq 4, lengt
ICMP echo reply, id 1565, seq 4, length

listening on hd4-eth0, link-type EN1OMB {Ethernet), capture size E9535 bytes

23:25:03,160774 ARP, Request who-has 10,0,0,2 tell 10,0,0,1,
23:25:03,161533 ARP, Reply 10,0,0,2 is-at 00:00:00:00:00:02 {oui Ethernet),

th 28

23:25:03,161971 IP 10,0,0.1 > 10,0,0,2:
h 64

23:25:03,162477 IP 10.0,0.2 > 10,0,0,1:
64

23:25:04,162343 IP 10,0,0.1 > 10,0,0,2:
h 64

23:25:04,162383 IP 10,0,0.2 > 10,0,0,1:
64

23325:05,161381 IP 10,0,0.1 > 10,0,0,2:
h B4
23:25:05,161427 IP 10,0,0.2 > 10,0,0,1:

length 28
leng

ICHP echo request, id 1565, seq 1,
ICHP echo
ICHP echo

lengt
reply, id 1565, seq 1, length
request, id 1565, seq 2, lengt
ICHP echo reply, id 1565, seq 2, length
ICHP echo request, id 1565, seq 3, lengt

ICHP echo reply, id 1565, seq 3, length

= Node: h3 (on mininet-vm) I‘;JLE_HZJ\

listening on h3-eth0, link-type EM10MB (Ethernet), capture size 65535 bytes
23:25:03,160770 ARP, Request who-has 10,0,0,2 tell 10,0,0,1, length 28
23:25:03,161527 ARP, Reply 10,0,0,2 is-at 00:00:00:00:00:02 (oui Ethernet), leng
52:33:03.181989 IP 10,0.0,1 > 10,0,0,2:
23535:03.1824?3 IP 10,0,0,2 > 10,0,0.1:
gg:25:04.182340 1P 10,0,0,1 > 10,0,0,2:
23?35:04.162387 IP 10,0.,0,2 > 10,0,0,1:
gg:25:05.181379 IP 10,0.0,1 > 10,0,0,2:
§§§35:05.181425 IP 10,0.0.2 > 10,0,0.1:

ICHP echo request, id 1565, seq 1, lengt

ICHP echo reply, id 1565, seq 1, length
ICHP echo request, id 1565, seq 2, lengt
ICHP echo reply, id 1565, seq 2, length
ICHP echo request, id 1565, seq 3, lengt

ICHP echo reply, id 1565, seq 3, length

ping from host h1l to host h2 (10.0.0.2). As can be seen, traffic is also received by h3 & h4
hosts although the packet was destined for h2 host.

Deleting Flow Entries

root@mininet-um:"# ovs-ofctl del-flous s1
root@mininet-um:"#

root@mininet-um:"# ovs-ofct]l dump-flous sl
NXST_FLOW reply (xid=0x4):
root@mininet-um:"#

mininet> pingall

wxx Ping: testing ping reachability

hi -> X X X

hz > X X X

h3 -> X X X

h4 -> X X X

»»% Results: 100x dropped (0/12 received)
mininet> exit

sxx Stopping 0 controllers

s»x Stopping 4 links

sxx Stopping 1 switches

sl

sxx Stopping 4 hosts

hl hZ h3 h4

s Done

completed in 7719.143 seconds
root@mininet-vm:™#
rootBmininet-vm:"# mn —c

ovs-ofctl del-flows s1
(delete all flow entries in device s1)

ovs-ofctl dump-flows s1
(show all flow entries)

mininet> pingall
(testing ping reachability. Not pinging
because we deleted the rules.)

mininet> exit
(destroy topology)

mn —c
(clean topology leftovers)

Switch Application using ovs-ofctl

leln Gupta vipin2411@gmail.com

Adding Flow Entries for Switch

Controller

—————.-\'I.

OpenFlow

Add flow entries using ovs-ofctl instead of controller

dl_dest=00:00c0 000000001 ,actions=ouripui: 1
dl_get=00:00:00000:00:02, actions=oulpul: 2
d|_dest=000c00000:00:03 actions=ouipul:3
dl_dst=00:00c00C00:00:04 actions =ouipui:d
amp,actiare=foad

port 1 port 2 port 3 port 4
“T- II] B
| |
| |
| |
| 1)
h
h1 h2 h3 h4
Q0-00-00-00:00:01 Q0-00:00:00:-00:02 00:00:00:00:00:03 3 00 050:00: 0004

MAC

If flow table contains entry with action to forward the packet to
specific port in same network, then forwarding device acts as
switch. Figure shows that host hl and h2 belongs to the same
network. When host hl wantsto send a packet to host h2, then it
first sends the packet to forwarding device at port 1. When a packet
arrives at port 1, then it is matched against flow entry. When match
is found, then it is forwarded to port 2 according to action specified
in flow entry

Eirini
Cross-Out

Eirini
Typewritten Text
s

Step 1: Create Topology

root@mininet-vm:~# mn --mac --topo single,4 --controller none
- ‘é’,.eating network ° : Create mininet topology consisting of 1 switch & 4 hosts.

«++ Adding controller We do not want to use any controller so we have

**%x Adding hosts: . . .,)
hl h2 h3 h4 specified the option “--controller none”.

*** Adding switches:
sl . . .
«x+ Adding links: You can use the following command for creating required
(h1, s1) (h2, s1) (h3, s1) (h4, s1) topology.

*¥% Configuring hosts

hl h2 h3 h4

*** Starting controller # mn --mac --topo single,4 --controller none

***¥ Starting 1 switches

s1... on mininet prompt, run pingall. As can be seen, none of
minii;i;“"g CLI: the hosts are able to ping each other.
mininet> pingall

***¥ pPing: testing ping reachability

hl -> X X X

h2 -> X XX

h3 -> X X X

hd -> X X X

*** Results: 100% dropped (0/12 received)

mininet>

root@mininet-vm:
NXST FLOW reply
root@mininet-vm:
root@mininet-vm:
root@mininet-vm:
root@mininet-vm:
root@mininet-vm:
root@mininet-vm:
root@mininet-vm:
root@mininet-vm:
root@mininet-vm:
root@mininet-vm:
root@mininet-vm:

~#

ovs-ofctl

(x1d=0x4) :

ovs-ofctl
ovs-ofctl
ovs-ofctl
ovs-ofctl

ovs-ofctl

Step 2: Add Flows

dump-flows sl

add-flow s1 dl dst=00:00:00:00:00:01,actions=output:1 Before adding flow, check the flows
ovs-ofctl dump-flows s1

add-flow sl dl dst=00:00:00:00:00:02,actions=output:2 e .
- (it is not showing any rules)

add-flow s1 dl dst=00:00:00:00:00:03,actions=output:3
add-flow sl dl dst=00:00:00:00:00:04,actions=output:4

add-flow sl arp,actions=flood

(The first flow table entry specifies that if destination mac address is 00:00:00:00:00:01 then send the packet out through
port 1. 2", 3rd 4rth rules are of same variety. Fifth entry specifies that if the packet is of arp type then flood the packet.
By adding the above 5 flow entries into device s1, we are simulating the behavior of the switch.)

now rules are visible on using “ovs-ofctl” with option “dump-flows”.

root@mininet-vm:~# ovs-ofctl dump-flows sl

NXST FLOW reply (xid=0x4):

cookie=0x0, duration=199.828s, table=0, n packets=0, n bytes=0, idle age=199, dl dst=00:00:00:00:00:02 actions=output:2
cookie=0x0, duration=189.007s, table=0, n packets=0, n bytes=0, idle age=189, dl dst=00:00:00:00:00:03 actions=output:3
cookie=0x0, duration=217.49s, table=0, n packets=0, n bytes=0, idle age=217, dl dst=00:00:00:00:00:01 actions=output:1
cookie=0x0, duration=178.401s, table=0, n packets=0, n bytes=0, idle age=178, dl dst=00:00:00:00:00:04 actions=output:4
cookie=0x0, duration=133.228s, table=0, n packets=0, n bytes=0, idle age=133, arp actions=FLOOD

root@mininet-vm:~#

Step 3: Checking Connectivity

mininet> pingall

*** ping: testing ping reachability

hl -> h2 h3 h4

h2 -> hl h3 h4

h3 -> hl h2 h4

h4 -> hl h2 h3

*** Results: 0% dropped (12/12 received)
mininet>

As can be seen, each host is able to ping to each other

Step 4: Verify Switch Behavior

 a
T "Node: h1l" (on mininet-vm) -0 x|X "Node: h2" (on mininet-vm) - O %
rootEmininet-um:“# [] rootEmininet-um:# []
| n . n H H -’ - -
X Node: h4" (on mininet-vm) - 0 x ["Node: h3" (on mininet-vm) - O X
rootémininet-un:"# [] rootEminiret-uns 4 []

There is another way by which you can check the functionality. Spawn x terminals by running the command
“xterm h1 h2 h3 h4” on mininet prompt. It will open x terminals as shown in screenshot.

Step 5: Verify Switch Behavior

-

-
b 5 "Node: h1l" (on mininet-vm) -0 x|X "Node: h2" (on mininet-vm) - O X%

root@nininet-vm: ¥ [] rootBmininet-vm:“# topdump —i h2-ethi
topdump? verbose output suppressed, use -v or -vwy for full protocol decode
ﬁistening on h2-eth?, link-type EN10MB (Ethernet), capture size 262144 bytes

T "Node: h4" (on mininet-vm) - 0O X "Node: h3" (on mininet-vm)

root@nininet-vn:™# topdump -1 hd-ethO rootBmininet-vm:™# topdump -i h3-etho

tepdump: verbose D”tP”t,S“PPPESSEd* use -v or —w¢ for full protocol decode tcpdump: werbose output suppressed, use -v or -wv for full protocol decode
ﬁlStB"I”Q on hd-eth0, link-type ENIOME (Ethernet), capture size 262144 bytes listening on h3-eth0, link-type EN1OMB (Ethernet), capture size 262144 bytes

We will use “tcpdump” utility for capturing the traffic on hosts h2, h3 & h4. We will ping
from host hl to host h2 (10.0.0.2).

Step 6: Verify Switch Behavior

"Node: hl" {on mininet-vm)

root@mininet—vmi™# ping —cd 10,0,0,2

PING 10,0,0,2 (10,0,0,2) 56(84) bytes of data,

B4 bytes from 10,0,0,2: icmp_zeq=1l ttl=64 time=1,0% mz
64 bytes from 10,0,0,2: icmp_seq=2 ttl=64 time=0,074 ms
B4 bytes from 10,0,0,2: icmp_seq=3 ttl=b4 time=0,074 mz
B4 bytes from 10,0,0,2¢ icmp_seq=4 ttl=G4 time=0,07] msz

—-—— 10,0,0,2 ping statistics ——

4 packets transmitted, 4 received, 0f packet loss, time 3003ms
rtt mindavg/max/mdey = 0,070/0,319/1, 0580, 426 ms

rootlmin net-wm: ~#

root@Emininet—vm: % ||

"Node: h2" (on mininet-vm) R s .

rootBmininet—wm:™#% topdump —i hZ-ethd

tocpdump? werbose output suppressed, use —v or —ww for full protocol decode
liztening on hZ-eth, link-type ENLOME (Etherret), capture zize 262144 bytes
08:03:18,574737 IP 10,0,0,1 > 10,0,0,2: ICHP echo request, id 2856, =zeq 1, lengt
h B4

03:03:18,574749 IP 10,0,0,2 > 10,0,0,1: ICHP echo reply, id 2856, =eq 1. length
B4

03:03+19,576158 IP 10,0,0,1 > 10,0,0,2¢+ ICHMP echo request, id 2856, =zeq 2, lengt
h B4

03:03:19,076182 IF 10,0,0,2 > 10,0,0,1: ICHP echo reply. id 2856, seq 2. length
B4

NB3:03:20,577633 IP 10,0,0,1 > 10,0,0,2; ICHP echo request, id 2856, =zeq 3, lengt
h B4

03303:20,577656 IF 10,0,0.2 > 10,0,0,1: ICHP echo reply. id 2856, seq 3. length
4

08:03:21, 05781010 [P 10,0,0,1 > 10,0,0,2¢ ICHMP echo request, id 2886, zeq 4, lengt
h B4

N3305:21,578123 IP 10,0,0,2 > 10,0,0,1: ICHP echo reply, id 2356, =zeq 4. length
B4

N3:03:23,086302 ARP, Request who-haz 10,0,0,1 tell 10,0,0,2, length 28
08:03:23,588390 ARP, Reply 10,0,0.1 is-at 0000:00:00:00:01 (oui Ethernet), leng
th 28

T "Node: h4" (on mininet-vm) - O

rootEmininet-vm:™# topdump -1 hd-etho
tocpdump: werbose output suppressed, use -v or -w for full protocol decode
listening on hd-ethd, link-type EN1OME (Ethernet), capture zize 262144 bytes

T "Node: h3" (on mininet-vm) N

rootBmininet-um:™# topdump -1 h3-ethi
topdump? werboze output suppreszsed. use -w ar -ww for full protocol decode
listening on h3-ethl, link-type EM10MB (Ethernet), capture size 262144 bytes

ping from host hl to host h2 (10.0.0.2). Also our device sl is not flooding the traffic to hosts h3 &
h4. Our device is sending the traffic to only specific ports.

Deleting Flow Entries

root@mininet-vm:~# ovs-ofctl del-flows sl
root@mininet-vm:~#
root@mininet-vm:~# ovs-ofctl dump-flows sl

mininet> pingall NXST FLOW reply (xid=0x4):
*** ping: testing ping reachability root@mininet-vm:~# _
hl -> X X X
h2 -> X X X
:3 -> i i i # ovs-ofctl del-flows s1
-> . . .
«++ Results: 100% dropped (0/12 received) (delete all flow entries in device s1)
mininet> exit
**% Stopping © controllers # ovs-ofctl dump-flows s1

+x+ Stopping 8 terms (show all flow entries)

*** Stopping 4 links
mininet> pingall

*+% Stopping 1 switches (testing ping reachability. Not pinging

sl

+** Stopping 4 hosts because we deleted the rules.)
hl h2 h3 h4

*** Done mininet> exit

completed in 2668.497 seconds
root@mininet-vm:~#
root@mininet-vm:~# mn -c

(destroy topology)

mn —c
(clean topology leftovers)

