TexvoAoyileg ALadLKTUOU
2025-26 (DIT 315)

Ap. Elpnvn Awwtou

21/10/2025

mailto:eliotou@hua.gr

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 electronic mail
e SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and
content distribution
networks

2.7 socket programming
with UDP and TCP

Web and HT TP

First, a review...
= web page consists of objects

" object can be HTML file, |PEG image, |ava applet,
audio file,...

" web page consists of base HTML-file which
includes several referenced objects

= each object is addressable by a URL, e.g.,

www . someschool .edu/someDept/pic.gif

— ——

host name path name

HTTP overview

HTTP: hypertext
transfer protocol

= Web'’ s application layer
protocol

» client/server model

* client: browser that
requests, receives,
(using HT TP protocol)
and “displays Web
objects

* server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running
Firefox browser

iPhone running
Safari browser

running
Apache Web
server

HTTP overview (continued)

uses TCP:

" client initiates TCP
connection (creates socket)
to server, port 80

= server accepts TCP
connection from client

" HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP

client) and Web server
(HTTP server)

= TCP connection closed

HTTP is “stateless ”

" server maintains no
information about
past client requests

aside -

protocols that maintain
11 b4
state are complex!

" past history (state) must be
maintained

= if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

HT TP connections

non-persistent HT TP

" at most one object
sent over TCP
connection

e connection then
closed

* downloading multiple
objects requires
multiple connections

persistent HT TP

* multiple objects can
be sent over single
TCP connection
between client, server

Non-persistent HTTP

suppose user enters URL: (contains text,
www . someSchool .edu/someDepartment/home.index references to 10
jpeg images)

la. HTTP client initiates TCP
connection to HT TP server

(Process) at |b. HTTP server at host
www.someSchool.edu on port www.someSchool.edu waiting
80 for TCP connection at port 80.
“accepts’ connection, notifying
2. HTTP client sends HTTP request client

message (containing URL) into
TCP connection socket. 3.HTTP server receives request
Message indicates that cIierN message, forms response

wants object message containing requested
someDepartment/home.index object, and sends message into
its socket
time

Non-persistent HT TP (cont.)
/ 4.HTTP server closes TCP

connection.
5. HTTP client receives response

message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

time
6. Steps |-5 repeated for each of

|0 jpeg objects

Non-persistent HT TP: response time

RTT (definition): time for a

small packet to travel from
client to server and back

HTTP response time:

one RTT to initiate TCP
connection

one RTT for HTTP request
and first few bytes of HTTP
response to return

file transmission time

non-persistent HT TP
response time =

2RTT+ file transmission
time

initiate TCP

connection

N

RTT.

request
file

N |77

RTT

fle ——

received

g

s

v

time

A

y
time

time to
transmit
file

Persistent HTTP (HTTP 1.1)

non-persistent HTTP issues:

" requires 2 RTTs per object

= OS overhead for each TCP
connection

" browsers often open
parallel TCP connections to
fetch referenced objects

persistent HTTP:

server leaves connection
open after sending
response

subsequent HT TP
messages between same
client/server sent over
open connection

client sends requests as
soon as it encounters a
referenced object

as little as one RTT for all
the referenced objects

prefer

re u e St m e S S a e Languages in order of preference:
French/Switzerland [fr-ch]
French [ff]

" two types of HT TP messages: request, response | s:sms . - [

" HTTP request message:
* ASCIl (human-readable format)

request line

(GET, POST,
HEAD commands)

header

lines

carriage return,
line feed at start
of line indicates
end of header lines

Web pages are sometimes offered in more than one |

anguage.
Choose languages for displaying these web pages, in order of
reference.

German [de] Move Down
English [en]

OK Cancel Help

carriage return character
/ line-feed character

GET /index.html HTTP/1.1\r\n

Host: www-net.cs.umass.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;g=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: IS0-8859-1,utf-8;g=0.7\r\n
Keep-Alive: 115\r\n

| Connection: keep-alive\r\n

—— \r\n

HTTP request message: general format

method |sp| URL |sp| version |cr|If Iri?]qeuest
header field name value |cr| If N
header
lines
header field name value |cr| If
cr| If
entity body ~ body

Uploading form input

POST method: HEAD method:

" web page often includes form = requests headers (only) that
iInput would be returned if

= user input sent from client to specified URL were
server in entity body of requested with an HTTP GET
HTTP POST request message method.

GET method (for sending data to PUT method:

server): = uploads new file (object) to

= include user data in URL field of Server ,
HTTP GET request message " completely replaces file that
(following a ?'): exists at specified URL with

content in entity body of
www.somesite.com/animalsearch’monkeys&banana POST HTTP r‘equeST message

Here are the major differences between GET and POST:

GET
In GET method, values are visible in the URL.

GET has a limitation on the length of the values,
generally 255 characters.

GET performs are better compared to POST
because of the simple nature of appending the
values in the URL.

This method supports only string data types.

GET results can be bookmarked.
GET request is often cacheable.

GET Parameters remain in web browser history.

A

POST
In POST method, values are not visible in the URL.

POST has no limitation on the length of the values since
they are submitted via the body of HTTP.

It has lower performance as compared to GET method
because of time spentin including POST values in the
HTTP body.

This method supports different data types, such as
string, numeric, binary, etc.

POST results cannot be bookmarked.
The POST request is hardly cacheable.

Parameters are not saved in web browser history.

Method types

HTTP/1.0: HTTP/I.1:
= GET = GET, POST, HEAD
= POST = PUT
= HEAD * uploads file in entity
* asks server to leave body to path specified
requested object out in URL field
of response = DELETE

* deletes file specified in
the URL field

HTTP response message

status line

(protocol
status Code\‘HTTP/l.l 200 OK\r\n

—

status phrase) Date: Sun, 26 Sep 2022 20:09:20 GMT\r\n

GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2020 17:00:02

header ETag: "17dc6-a5c-b£f716880"\r\n

Accept-Ranges: bytes\r\n

lines Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=IS0-8859-
1\r\n
data, e.g., \r\n\ \

requeSted////,»data data data data data
HTML file

HT TP response status codes

= status code appears in 1st line in server-to-
client response message.

= some sample codes:
200 OK

* request succeeded, requested object later in this msg
301 Moved Permanently

* requested object moved, new location specified later in this msg
(Location:)

400 Bad Request

* request msg not understood by server

404 Not Found

* requested document not found on this server

505 HTTP Version Not Supported

|. Telnet to your favorite Web server: S

telnet gaia.cs.umass.edu 80 [OpeENs TCP connection to port 80
(default HTTP server port)

- at gaia.cs.umass. edu.
anything typed in will be sent
_ to port 80 at gaia.cs.umass.edu

2. type ina GET HTTP request:

GET /kurose ross/interactive/index.php

— by typing this in (hit carriage
return twice), you send
this minimal (but complete)
_GET request to HTTP server

3. look at response message sent by HTTP server!
(or use Wireshark to look at captured HT TP request/response)

CCCCCC

User-server state: cookies

many Web sites use cookies example:

to maintain some state = Susan always accesses
between transactions Internet from PC
four components: = visits specific e-commerce

1) cookie header line of site for first time

HTTP response message ® When initial HTTP request
arrives at site, site creates:
2) cookie header line in

next HTTP request * unique ID
message * entry in backend

3) cookie file kept on database for ID

’
user s host, managed
’
by user s browser

4) back-end database at
Web site

Cookies: keeping “state” (cont.)

client J

4

server

ebay 8734 s

usual http request msg Amazon server

D L LA L 1678 for user create Packend
ebay 8734 set-cookie: 1678 entry database
amazon 1678 ™

— usual http request msg ,
cookie: 1678 cookie- access
—— specific
.| usual http response msg action
one week later: /
access
CEVEYEYI | usual http request msg .
amazon 1678 cookie: 1678 cookie-
—_ > specific
.| Usual http response msg action

Cookies (continued)

what cookies can be used
for:

= authorization

" shopping carts

= recommendations

" user session state (VWeb
e-mail)

how to keep “state”:

= protocol endpoints:
maintain state at
sender/receiver over
multiple transactions

" cookies: http messages
carry state

aside —
cookies and privacy:

" cookies permit sites to
learn a lot about you

" you may supply name and
e-mail to sites

Example: displaying a NY Times web page

GET base html file
from nytimes.com

fetch ad from nytimes.com
AdX.com 1

HTTP HTTP
.) (2
(? display composed ser D C reply

page

NY times page with
embedded ad
displayed

Cookies: tracking a user’s browsing behavior

“first party” cookie —
from website you chose
to visit (provides base
html file)

nytimes.com (sports)

a

HTTP HTTP
GET reply
Set cookie: 1634

“third party” cookie —
from website you did
not choose to visit

HTTP reply
Set cookie: 7493

Cookies: tracking a user’s browsing behavior

AdX:
HTTP = tracks my web browsing
reply))
over sites with AdX ads
HTTP = can return targeted ads
GET based on browsing history
HTTP GET
Referrer: socks.com, cookie:
749277\ _ []
& —
. 7\ 7493:INY Times sports, 2/15/22
) O/ 7493socks.com, 2/16/22
HTTP reply (,
6 Set cookie: 7493
34 AdX.com

Cookies: tracking a user’s browsing behavior (one day later)

1634:{sports, 2/15/22
1634jarts, 2/17/22

nytimes.com (arts)

a

HTTP HTTP
GET reply
cookie: 1634 Set cookie: 1634

v

HTTP GET
Referrer: nytimes.com, cookie: 749

@
) 7\ 7493:INY Times sports, 2/15/22
) S 7493 socks.com, 2/16/22
HTTP reply NY Times arts, 2/15/22
NY|Times: [L634 Set cookie: 7493 AdX com

Cookies: tracking a user’s browsing behavior

Cookies can be used to:
= track user behavior on a given website (first party cookies)

= track user behavior across multiple websites (third party
cookies) without user ever choosing to visit tracker site (!)

" tracking may be invisible to user:

*rather than displayed ad triggering HT TP GET to tracker, could be
an invisible link

third party tracking via cookies:
* disabled by default in Firefox, Safari browsers
" to be disabled in Chrome browser in 2023

GDPR (EU General Data Protection Regulation) and cookies

“Natural persons may be associated with online
identifiers [...] such as internet protocol addresses,
cookie identifiers or other identifiers [...].

This may leave traces which, in particular when

combined with unique identifiers and other
information received by the servers, may be used to
create profiles of the natural persons and identify
them.”

GDPR, recital 30 (May 2018)

v

when cookies can identify an individual, cookies

User has explicit control

over whether or not cookies
are considered personal data, subject to GDPR are allowed

personal data regulations

Web caches (proxy server)

goal: satisfy client request without involving origin server

= user sets browser: Web
accesses via cache

" browser sends all HTTP
requests to cache

* object in cache: cache
returns object

* else cache requests
object from origin
server, then returns
object to client

origin
server

More about Web caching

= cache acts as both client

and server

* server for original requesting
client

 client to origin server

= typically cache is installed
by ISP (university,
company, residential ISP)

= server tells cache about
object’s allowable caching in
response header:

Cache-Control: max-age=<seconds>

Cache-Control: no-cache

why Web caching?

" reduce response time
for client request

" reduce traffic on an
. . . ” .
institution s access link

* |Internet dense with
caches: enables “poor”
content providers to
effectively deliver

content (so too does
P2P file sharing)

Caching example:

assumptions:
avg object size: 100K bits origin
avg request rate from browsers to servers

consequences:

origin servers: |5 requests/sec
avg data rate to browsers: |.50 Mbps

RTT from Internet router to any
origin server: 2 sec

access link rate: 1.54 Mbps

1.54 Mbps
access link

LAN utilization: 0.15% nroblem!
access link utiIization
total delay = Internet defay + access

delay + LAN delay
= 2 sec + minutes + usecs

XapokoTrelo Mavetmothuio — TuApa MANPo@opIKAG Kal TNAEUATIKAG

Caching example: faster access link

assumptions:

= avg object size: 00K bits

= avg request rate from browsers to
origin servers:|5/sec

= avg data rate to browsers: |.50 Mbps

= RTT from institutional router to any
origin server: 2 sec

= access link rate: I754-Mbps 154 Mbps

consequences:
= |LAN utilization: 0.15%

. . oo . — o
access link utilization S27% ¢ 79,

= total delay = Internet delay + access
delay + LAN delay

= 2 sec +-minutes + usecs

msecs

origin
servers

access link 154 Mbps

Cost: increased access link speed (not cheap!)

XapokoTrelo Mavetmothuio — TuApa MANPo@opIKAG Kal TNAEUATIKAG

Caching example: install local cache

assumptions:
= avg object size: 00K bits

= avg request rate from browsers to
origin servers:|5/sec

= avg data rate to browsers: |.50 Mbps

= RTT from institutional router to any
origin server: 2 sec

origin
servers

= access link rate: 1.54 Mbps 1.54 Mbps
consequences: access link
= LAN utilization: 0.15%

= access link utilization = ?
= total delay = ?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

XapokoTrelo Mavetmothuio — TuApa MANPo@opIKAG Kal TNAEUATIKAG

Caching example: install local cache

Calculating access link
utilization, delay with cache:

= suppose cache hit rate is 0.4
* 40% requests satisfied at cache
* 60% requests satisfied at origin

origin
servers

= access link utilization:
= 60% of requests use access link

= data rate to browsers over access link
= 0.6*1.50 Mbps = 0.9 Mbps
= utilization = 0.9/1.54 = 0.58

1.54 Mbps
access link

= total delay

» = (.6 * (delay from origin servers) + 0.4 * ' web
(delay when satisfied at cache) €

= = 0.6 (~2sec) + 0.4 (~msecs) = ~ 1.2 secs

" less than with 154 Mbps link (and cheaper
too!)

XapokoTrelo Mavetmothuio — TuApa MANPo@opIKAG Kal TNAEUATIKAG

Conditional GET

server

client Q =

= Goal: don’ t send object if -

cache has up-to-date
cached version

HTTP request msg

. .. If-modified-since: <date> — object
* no object transmission not
delay — modified
* lower link utilization — HTLi_:_i?fznse before
= cache: specify date of 304 Not Modified <date>
cached copy in HTTP
request ____________________
If-modified-since:
<date> —1 HTTP request msg
" server: response contains If-modified-since: <date> — Obée'f(':td
no object if cached copy B mof e
is Up-to-date: HTTP response after
P : <7 HTTP/1.0 200 OK <date>
Modified

HTTP/2

Key goal: decreased delay in multi-object HT TP requests

HTTPI1.1: introduced multiple, pipelined GETs over
single TCP connection

= server responds in-order (FCFS: first-come-first-served
scheduling) to GET requests

= with FCFS, small object may have to wait for transmission
(head-of-line (HOL) blocking) behind large object(s)

= loss recovery (retransmitting lost TCP segments) stalls
object transmission

HTTP/2

Key goal: decreased delay in multi-object HT TP requests

HTTP/2: rrc 7540, 2015] increased flexibility at server in
sending objects to client:

= methods, status codes, most header fields unchanged from
HTTP 1.1

= transmission order of requested objects based on client-
specified object priority (not necessarily FCFS)

= push unrequested objects to client (maybe future
requested)

= divide large objects into frames, schedule frames to
mitigate HOL blocking

HTTP/2: mitigating HOL blocking

HTTP 1.1: client requests | large object (e.g., video file) and 3 smaller objects

server

N
J
|

q GETO, GeTO P
e 3 GETO; GeTO, (_J
client

object data requested

-l

N

S

A A A I

/1N
000

N

o

objects delivered in order requested: O,, O;, O, wait behind O,

XapokoTrelo MNavetmoTApio — TuApa NMANPo@opIKAG Kal TNAEPATIKAG

HTTP/2: mitigating HOL blocking

HTTP/2: objects divided into frames, frame transmission interleaved

server

object data requested

A A

N

0
_03
aNGe)

N

A

0,, 0;, O, delivered quickly, O, slightly delayed

XapokoTrelo MNavetmoTApio — TuApa NMANPo@opIKAG Kal TNAEPATIKAG

	Slide 1: Τεχνολογίες Διαδικτύου 2025-26 (DIT 315)
	Slide 2: Chapter 2: outline
	Slide 3: Web and HTTP
	Slide 4: HTTP overview
	Slide 5: HTTP overview (continued)
	Slide 6: HTTP connections
	Slide 7: Non-persistent HTTP
	Slide 8: Non-persistent HTTP (cont.)
	Slide 9: Non-persistent HTTP: response time
	Slide 10: Persistent HTTP (HTTP 1.1)
	Slide 11: HTTP request message
	Slide 12: HTTP request message: general format
	Slide 13: Uploading form input
	Slide 14
	Slide 15: Method types
	Slide 16: HTTP response message
	Slide 17: HTTP response status codes
	Slide 18: Trying out HTTP (client side)
	Slide 19: User-server state: cookies
	Slide 20: Cookies: keeping “state” (cont.)
	Slide 21: Cookies (continued)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Web caches (proxy server)
	Slide 29: More about Web caching
	Slide 30: Caching example:
	Slide 31: Caching example: faster access link
	Slide 32: Caching example: install local cache
	Slide 33: Caching example: install local cache
	Slide 34: Conditional GET
	Slide 35
	Slide 36
	Slide 37
	Slide 38

