
Τεχνολογίες Διαδικτύου
2025-26 (DIT 315)

Δρ. Ειρήνη Λιώτου

eliotou@hua.gr

18/11/2025

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

mailto:eliotou@hua.gr

Chapter 2: outline

2.1 principles of network

applications

2.2 Web and HTTP

2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and

content distribution

networks

2.7 socket programming

with UDP and TCP

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Pure P2P architecture

▪ no always-on server

▪ arbitrary end systems
directly communicate

▪ peers are intermittently
connected and change
IP addresses

examples:
• file distribution

(BitTorrent)

• Streaming (KanKan)

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
• peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant

 bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

File distribution time: client-server

▪ server transmission: must
sequentially send (upload) N
file copies:

• time to send one copy: F/us

• time to send N copies: NF/us

increases linearly in N

time to distribute F

to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

▪ client: each client must
download file copy
• dmin = min client download rate

• client download time: F/dmin

us

network

di

ui

F

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

File distribution time: P2P

▪ server transmission: must
upload at least one copy

• time to send one copy: F/us

time to distribute F

to N clients using

P2P approach

us

network

di

ui

F

DP2P > max{F/us,,F/dmin,,NF/(us + ui)}

▪ client: each client must
download file copy
• client download time: F/dmin

▪ clients: as aggregate must download NF bits

• max upload rate (limiting max download rate) is us + ui

… but so does this, as each peer brings service capacity

increases linearly in N …

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

▪ file divided into 256KByte chunks

▪ peers in torrent send/receive file chunks

… obtains list

of peers from tracker
… and begins exchanging

file chunks with peers in torrent

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

▪ peer joining torrent:

• has no chunks, but will
accumulate them over time
from other peers

• registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

P2P file distribution: BitTorrent

▪ while downloading, peer uploads chunks to other peers

▪ peer may change peers with whom it exchanges chunks

▪ churn: peers may come and go

▪ once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

BitTorrent: requesting, sending file chunks

requesting chunks:
▪ at any given time, different

peers have different subsets
of file chunks

▪ periodically, Alice asks each
peer for list of chunks that
they have

▪ Alice requests missing
chunks from peers, rarest
first

sending chunks: tit-for-tat
▪ Alice sends chunks to those

four peers currently sending her
chunks at highest rate
• other peers are choked by Alice

(do not receive chunks from her)

• re-evaluate top 4 every 10 secs

▪ every 30 secs: randomly select
another peer, starts sending
chunks
• “optimistically unchoke” this peer

• newly chosen peer may join top 4

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better

trading partners, get file faster !

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Chapter 2: outline

2.1 principles of network

applications

2.2 Web and HTTP

2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and

content distribution

networks

2.7 socket programming

with UDP and TCP

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Video Streaming and CDNs: context

• Netflix, YouTube: 37%, 16% of downstream

residential ISP traffic

• ~1B YouTube users, ~75M Netflix users

▪ challenge: scale - how to reach ~1B

users?

• single mega-video server won’t work (why?)

▪ challenge: heterogeneity

▪ different users have different capabilities (e.g.,

wired versus mobile; bandwidth rich versus

bandwidth poor)

▪ solution: distributed, application-level

infrastructure

▪ video traffic: major consumer of Internet bandwidth

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Streaming stored video:

simple scenario:

video server

(stored video)
client

Internet

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Main challenges:

• server-to-client bandwidth will vary over time, with changing

network congestion levels (in house, access network, network

core, video server)

• packet loss, delay due to congestion will delay playout, or result in

poor video quality

HTTP Adaptive Streaming (HAS)

Comparison of HTTP video streaming and HTTP adaptive video streaming

Q: Why is
this better?

Streaming multimedia: DASH

▪ DASH: Dynamic, Adaptive Streaming over HTTP

▪ server:
• divides video file into multiple chunks

• each chunk encoded at multiple different rates

• different rate encodings stored in different files

• files replicated in various CDN nodes

• manifest file: provides URLs for different chunks

▪ client:
• periodically measures server-to-client bandwidth

• consulting manifest, requests one chunk at a time

• chooses maximum coding rate sustainable given current

bandwidth

• can choose different coding rates at different points in time

(depending on available bandwidth at time)

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Based on how fast the

current (and previous)

segments are

downloaded, the bit

rate of the next

segment is selected

* M. Seufert, S. Egger, M.Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia, “Survey on Quality of Experience of HTTP Adaptive Streaming”, IEEE Communication Surveys &

Tutorials, Vol. 17, No. 1, 2015.

DASH example

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Streaming multimedia: DASH

▪ DASH: Dynamic, Adaptive
Streaming over HTTP

▪ “intelligence” at client: client
determines
• when to request chunk (so that buffer

starvation, or overflow does not
occur)

• what encoding rate to request (higher
quality when more bandwidth
available)

• where to request chunk (can request
from URL server that is “close” to
client or has high available
bandwidth)

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Streaming video = encoding + DASH + playout buffering

HTTP Adaptive Streaming (HAS)

▪ Other influence factors:

▪ Adaptation frequency (number of switches), adaptation
amplitude, adaptation direction, segment length, buffer
size, etc.

Chunks

Manifest file

Time

Video bit rate

UE2 buffer

UEn buffer

UE1 buffer

Video origin server /

HTTP cache server

eNB

(0): Video encoded at multiple bit rates and split into temporal segments

(1)-(2): UE makes an HTTP video request via the eNB to the video server / MEC

(3)-(4): Manifest file sent back to the UE with the description and URLs of all available

quality representations

(5) UE runs its HAS selection strategy

(6)-(7): UE requests the next segment to download via the eNB

(8): The selected segment is sent to the eNB via the backhaul link

(9): The eNB progressively sends the selected content via downlink radio scheduling

(10): The UE buffer is progressively filled and video playout starts

(0)

(10)

DASH example: LTE

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Content distribution networks

▪ challenge: how to stream content (selected from
millions of videos) to hundreds of thousands of
simultaneous users?

▪ option 1: single, large “mega-server”
• single point of failure

• point of network congestion

• long path to distant clients

• multiple copies of video sent over outgoing link

….quite simply: this solution doesn’t scale

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Content distribution networks

▪ challenge: how to stream content (selected from
millions of videos) to hundreds of thousands of
simultaneous users?

▪ option 2: store/serve multiple copies of videos at
multiple geographically distributed sites (CDN)
• enter deep: push CDN servers deep into many access

networks (edge)
• close to users

• used by Akamai, 1700 locations

• bring home: smaller number (10’s) of larger clusters in
POPs near (but not within) access networks

• used by Limelight

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Content Distribution Networks (CDNs)

▪ subscriber requests content from CDN

▪ CDN: stores copies of content at CDN nodes
• e.g. Netflix stores copies of MadMen

where’s Madmen?

manifest file

• directed to nearby copy, retrieves content
• may choose different copy if network path congested

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

CDN content access: a closer look

Bob (client) requests video http://video.netcinema.com/6Y7B23V

▪ video stored in CDN at http://KingCDN.com/NetC6y&B23V

netcinema.com

KingCDN.com

1

1. Bob gets URL for video

http://video.netcinema.com/6Y7B23V

from netcinema.com web page

2

2. resolve http://video.netcinema.com/6Y7B23V

via Bob’s local DNS

netcinema’s
authoritative DNS

3

3. netcinema’s DNS returns URL

http://KingCDN.com/NetC6y&B23V 4
4&5. Resolve

http://KingCDN.com/NetC6y&B23

via KingCDN’s authoritative DNS,

which returns IP address of KingCDN

server with video

56. request video from

KINGCDN server,

streamed via HTTP

KingCDN
authoritative DNS/content distribution server

Bob’s
local DNS
server

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Content Distribution Networks (CDNs)

Internet host-host communication as a service

OTT challenges: coping with a congested Internet
• from which CDN node to retrieve content?

• viewer behavior in presence of congestion?

• what content to place in which CDN node?

“over the top”

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Content distribution networks

▪ The CDN must intercept the request so that it can:

• Determine a suitable CDN server cluster for that
client at that time, and

• Redirect the client’s request to a server in that cluster

▪ Cluster selection strategy is a mechanism for dynamically
directing clients to a server cluster / data center within
the CDN

• CDN learns the IP address of the client’s LDNS server
via the client’s DNS lookup. After learning this IP
address, the CDN needs to select an appropriate
cluster based on this IP address

• CDNs generally employ proprietary cluster selection
strategies (geographically closest / real-time
measurements-based / etc.)

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Case study: Netflix

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

▪ Netflix video distribution has two major components: the Amazon
cloud and its own private CDN infrastructure.

▪ Content ingestion. Before Netflix can distribute a movie to its
customers, it must first ingest and process the movie

▪ Content processing. The machines in the Amazon cloud create
many different formats for each movie, suitable for a diverse array of
client video players running on desktop computers, smartphones, and
game consoles connected to televisions

▪ Uploading versions to its CDN. Once all of the versions of a
movie have been created, the hosts in the Amazon cloud upload the
versions to its CDN.

Case study: Netflix

1

1. Bob manages

Netflix account

Netflix registration,
accounting servers

Amazon cloud

CDN

server

2

2. Bob browses

Netflix video
3

3. Manifest file

returned for

requested video

4. DASH

streaming

upload copies of
multiple versions of
video to CDN servers

CDN

server

CDN

server

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

Application Layer 2-31

Chapter 2: outline

2.1 principles of network

applications

2.2 Web and HTTP

2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and

content distribution

networks

2.7 socket programming

with UDP and TCP

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-
end-transport protocol

Application Layer 2-32

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

?

de-multiplexing

transport

application

multiplexing

transport

application

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing as receiver:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing as sender:

Transport Layer: 3-35

How demultiplexing works

▪ host receives IP datagrams
• each datagram has source IP

address, destination IP address

• each datagram carries one
transport-layer segment

• each segment has source,
destination port number

▪ host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

Transport Layer: 3-36

Connection-oriented demultiplexing

▪ TCP socket identified by
4-tuple:
• source IP address

• source port number

• dest IP address

• dest port number

▪ server may support many
simultaneous TCP sockets:
• each socket identified by its

own 4-tuple

• each socket associated with
a different connecting client

▪ demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

Transport Layer: 3-37

Connection-oriented demultiplexing: example

transport

application

physical

link

network

P1

transport

application

physical

link

P4

transport

application

physical

link

network

P2

host: IP
address A

host: IP
address

C

network

P6P5
P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP
address B

Three segments, all destined to IP address: B,
 dest port: 80 are demultiplexed to different sockets

Transport Layer: 3-38

Socket programming

Two socket types for two transport services:

• UDP: unreliable datagram

• TCP: reliable, byte stream-oriented

Application Layer 2-39

Application Example:
1. client reads a line of characters (data) from its

keyboard and sends data to server
2. server receives the data and converts characters

to uppercase
3. server sends modified data to client
4. client receives modified data and displays line on

its screen

Socket programming with UDP

UDP: no “connection” between client & server
▪ no handshaking before sending data

▪ sender explicitly attaches IP destination address and
port # to each packet

▪ receiver extracts sender IP address and port# from
received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
▪ UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

Application Layer 2-40

Client/server socket interaction: UDP

close

clientSocket

read datagram from

clientSocket

create socket:

clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and

port=x; send datagram via

clientSocket

create socket, port= x:

serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from

serverSocket

write reply to

serverSocket

specifying

client address,

port number

Application 2-41

server (running on serverIP) client

Application Layer 2-42

Example app: UDP client

from socket import *

serverName = ‘hostname’

serverPort = 12000

clientSocket = socket(AF_INET,

 SOCK_DGRAM)

message = raw_input(’Input lowercase sentence:’)

clientSocket.sendto(message.encode(),

 (serverName, serverPort))

modifiedMessage, serverAddress =

 clientSocket.recvfrom(2048)

print modifiedMessage.decode()

clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for

server

get user keyboard
input

Attach server name, port to

message; send into socket

print out received string

and close socket

read reply characters from

socket into string

Application Layer 2-43

Example app: UDP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print (“The server is ready to receive”)

while True:

 message, clientAddress = serverSocket.recvfrom(2048)

 modifiedMessage = message.decode().upper()

 serverSocket.sendto(modifiedMessage.encode(),

 clientAddress)

Python UDPServer

create UDP socket

bind socket to local port

number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string

back to this client

Socket programming with TCP

client must contact server

▪ server process must first be
running

▪ server must have created
socket (door) that
welcomes client’s contact

client contacts server by:

▪ Creating TCP socket,
specifying IP address, port
number of server process

▪ when client creates socket:
client TCP establishes
connection to server TCP

▪ when contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client

• allows server to talk with
multiple clients

• source port numbers used
to distinguish clients
(more in Chap 3)

Application Layer 2-44

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Client/server socket interaction: TCP

Application Layer 2-45

wait for incoming

connection request
connectionSocket =

serverSocket.accept()

create socket,
port=x, for incoming

request:
serverSocket = socket()

create socket,
connect to hostid, port=x

clientSocket = socket()

server (running on hostid) client

send request using

clientSocketread request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

close

connectionSocket

read reply from

clientSocket

close

clientSocket

Application Layer 2-46

Example app: TCP client

from socket import *

serverName = ’servername’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)

clientSocket.send(sentence.encode())

modifiedSentence = clientSocket.recv(1024)

print (‘From Server:’, modifiedSentence.decode())

clientSocket.close()

Python TCPClient

create TCP socket for

server, remote port 12000

No need to attach server

name, port

Application Layer 2-47

Example app: TCP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

print ‘The server is ready to receive’

while True:

 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024).decode()

 capitalizedSentence = sentence.upper()

 connectionSocket.send(capitalizedSentence.

 encode())

 connectionSocket.close()

Python TCPServer

create TCP welcoming

socket

server begins listening for

incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but

not address as in UDP)

close connection to this

client (but not welcoming

socket)

Chapter 2: summary

▪ application architectures

• client-server

• P2P

▪ application service
requirements:

• reliability, bandwidth, delay

▪ Internet transport service
model

• connection-oriented,
reliable: TCP

• unreliable, datagrams: UDP

our study of network apps now complete!

Application Layer 2-48

▪ specific protocols:

• HTTP

• SMTP, POP, IMAP

• DNS

• P2P: BitTorrent

▪ video streaming, CDNs

▪ socket programming:

 TCP, UDP sockets

▪ typical request/reply
message exchange:

• client requests info or
service

• server responds with
data, status code

▪ message formats:

• headers: fields giving
info about data

• data: info(payload)
being communicated

Application Layer 2-49

important themes:
▪ control vs. messages

• in-band, out-of-band

▪ centralized vs. decentralized

▪ stateless vs. stateful

▪ reliable vs. unreliable message

transfer

▪ “complexity at network

edge”

Chapter 2: summary

most importantly: learned about protocols!

	Slide 1: Τεχνολογίες Διαδικτύου 2025-26 (DIT 315)
	Slide 2: Chapter 2: outline
	Slide 3: Pure P2P architecture
	Slide 4: File distribution: client-server vs P2P
	Slide 5: File distribution time: client-server
	Slide 6: File distribution time: P2P
	Slide 7
	Slide 8: P2P file distribution: BitTorrent
	Slide 9
	Slide 10: BitTorrent: requesting, sending file chunks
	Slide 11: BitTorrent: tit-for-tat
	Slide 12: Chapter 2: outline
	Slide 13: Video Streaming and CDNs: context
	Slide 14: Streaming stored video:
	Slide 15: HTTP Adaptive Streaming (HAS)
	Slide 16: Streaming multimedia: DASH
	Slide 17
	Slide 18: Streaming multimedia: DASH
	Slide 19: HTTP Adaptive Streaming (HAS)
	Slide 20: Chunks
	Slide 21: Manifest file
	Slide 22
	Slide 23: Content distribution networks
	Slide 24: Content distribution networks
	Slide 25
	Slide 26: CDN content access: a closer look
	Slide 27
	Slide 28: Content distribution networks
	Slide 29: Case study: Netflix
	Slide 30: Case study: Netflix
	Slide 31: Chapter 2: outline
	Slide 32: Socket programming
	Slide 33
	Slide 34
	Slide 35: Multiplexing/demultiplexing
	Slide 36: How demultiplexing works
	Slide 37: Connection-oriented demultiplexing
	Slide 38: Connection-oriented demultiplexing: example
	Slide 39: Socket programming
	Slide 40: Socket programming with UDP
	Slide 41: Client/server socket interaction: UDP
	Slide 42
	Slide 43
	Slide 44: Socket programming with TCP
	Slide 45: Client/server socket interaction: TCP
	Slide 46
	Slide 47
	Slide 48: Chapter 2: summary
	Slide 49

