TexvoAoyileg ALadLKTUOU
2025-26 (DIT315)

Ap. Elpnvn Awwtou

9/12/2025

mailto:eliotou@hua.gr

Chapter 9
Multimedia
Networking

A note on the use of these Powerpoint slides:

We' re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a /ot of work on our part. In return for use, we only

ask the following: Computer
» If you use these slides (e.g., in a class) that you mention their source Ne tworklng.' A Top

(after all, we’ d like people to use our book!)

= |f you post any slides on a www site, that you note that they are adapted DO wh ApprOa Ch

from (or perhaps identical to) our slides, and note our copyright of this
7th edition

material.
Jim Kurose, Keith Ross

© All material copyright 1996-2016 Pearson/Addison Wesley
J.F Kurose and K.W. Ross, All Rights Reserved April 2016

4

Thanks and enjoy! JFK/IKWR

Multimedia networking: outline

9.1 multimedia networking applications
9.2 streaming stored video
9.3 voice-over-|P

9.4 protocols for real-time conversational
applications

9.5 network support for multimedia

MaApokwown dtapopdwon (PCM)

_ o
KBavtion How to

Kwdikomoinon improve
quality then?

Apibipnog x,(0) X, (1) Apbpog Avadikn) Ty

AEYNETOS arabuns apibpov etabung
0 1.3 1,25 [0 1010
1 2.3 2,25 12 1100
2 2,7 2,75 13 1101
3 3.2 3,25 L4 1110
4 1,45 1,25 10 1010
5 [{RY 075 (i) 0110
6 -7 - 1,75 4 0100
7 0.3 0,25 8 1000
’ AswypatoAnyia 8 0.7 0,75 9 1001
3 ?] 0.7 0,75 9 1001
0 10 1.6 1,75 11 1011
t :2:“:;2*:““9 yial Ts g 11 2.8 2,75 13 1101
12 1.7 1,75 11 (011

Source: EAM-MIAH22 XapokoTrelo MNavetmoTApio — TuAua NMANPo@opIkAg Kal TNAEPATIKAG

Multimedia; audio

= analog audio signal
sampled at constant rate

* telephone: 8,000
samples/sec

* CD music: 44,100
samples/sec

" each sample quantized, i.e.,
rounded

* e.g., 28=256 possible
quantized values

* each quantized value

represented by bits,
e.g., 8 bits for 256
values

quantization

quantized
error value of

o Z analog value
=]
3 44 >> Z analog
S N x signal
© \. /
c
ke \
(7]
R
©
2
©

time

sampling rate
(N sample/sec)

Multimedia; audio

= example: 8,000 samples/sec,
256 quantized values: 64,000
bps
" receiver converts bits back to
analog signal:
* some quality reduction

example rates
= CD: 1.411 Mbps

= MP3:96, 128, 160 kbps

* [nternet telephony: 5.3 kbps
and up

quantization

quantized
error

value of
analog value

é >;4 Z X analog

signal

L

audio signal amplitude
/

time

sampling rate
(N sample/sec)

. . . spatial coding example: instead
IVI m o d of sending N values of same
u Itl ed Ia" VI eo color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

" video: sequence of images
displayed at constant rate

* e.g., 24 images/sec
= digital image: array of pixels
* each pixel represented
by bits
* coding: use redundancy
within and between images frame i

to decrease # bits used to
encode image

° spatial (within image) temporal coding example:
instead of sending
° temPOFa| (from one complete frame at i+1,
image to next) 1s:‘,rzr:]:le()inly differences from

frame j+1

. . . spatial coding example: instead
IVI m o d of sending N values of same
u Itl ed Ia' VI eo color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

* CBR:(constant bit rate):
video encoding rate fixed

= VBR: (variable bit rate):
video encoding rate changes
as amount of spatial,
temporal coding changes

" examples:

* MPEG | (CD-ROM) 1.5
Mbps frame j

» MPEG2 (DVD) 3-6 Mbps

° M PEG4 (Often USECI In temporal coding example:

Internet, < | MbPS) instead of sending
complete frame at i+1,
send only differences from
frame i

frame j+1

Multimedia networking: 3 application types

" streaming, stored audio, video
* streaming: can begin playout before downloading entire
file
* stored (at server): can transmit faster than audio/video
will be rendered (implies storing/buffering at client)

* e.g., YouTube, Netflix, Hulu

= conversational voice/video over IP

* interactive nature of human-to-human conversation
limits delay tolerance

* e.g., Skype
" streaming live audio, video
* e.g, live sporting event (football)

Multimedia networking: outline

9.1 multimedia networking applications
9.2 streaming stored video
9.3 voice-over-|P

9.4 protocols for real-time conversational
applications

9.5 network support for multimedia

UDP streaming,

Streaming stored video:
HTTP streaming,

simple scenario: adaptive HTTP streaming

-

client

video server

(stored video)
Characteristics
- Streaming
- Interactivity
- Continuous playout

The most important performance measure for streaming video is average end-to-end
throughput

XapokoTrelo MNavetmoTApio — TuAua NMANPo@opIkAg Kal TNAEPATIKAG

Streaming stored video: challenges

" continuous playout constraint: during client video
playout, playout timing must match original timing

* ... but network delays are variable (jitter), so will need client-
side buffer to match continuous playout constraint

= other challenges:

* client interactivity: pause, fast-forward, rewind, jump
through video

* video packets may be lost, retransmitted

Cumulative data

Streaming stored video

2.video :
sent E
l. 3. video received,
recorded (e.g\ // i played out at client
30 frames/sec) ¥ "7/ < > | (30 frames/sec) (ime
- == network delay
TR (fixed in this

example)

| streaming: at this time, client playing out early part
i of video, while server still sending later part of
video

Streaming stored video: playout buffering

rate video
transmission

constant bit _

&

variable

client video
reception

!

Buffer =7

constant bit

Cumulative data

network
delay

v

buffered

|
|

rate video
playout at client

_client playout

delay

time

= client-side buffering and playout delay: compensate for network-added

delay, delay jitter

Client-side buffering, Elaxcut

buffer fill level,
-« Q(t) -

variable fill playout rate,
5 rate, x(t) e.g.,,CBRr
>
client application

video server <«— buffer, size B—

g client

XapokoTrelo MNavetmoTApio — TuAua NMANPo@opIkAg Kal TNAEPATIKAG

Client-side buffering, Elaxout

buffer fill level,
-« Q(t) -

varlable fill playout rate,
ﬂ rate, x(t I e.g.,,CBRr
>
client application

video server <«— buffer, size B—

g client

| Initial fill of buffer until playout begins at t;

2. Playout begins at t,
3. Buffer fill level varies over time as fill rate x(t) varies
and playout rate r is constant

Client-side buffering, Elaxout

buffer fill level,
. Q(t) —

variable fill playout rate,
>

client application
<«—buffer, size B—>

blayout buffering: average fill rate (x), playout rate (r):
" X < r: buffer eventually empties (causing freezing of video
playout until buffer again fills)

= X > r: buffer will not empty, provided initial playout delay is
large enough to absorb variability in x(t)

* |initial playout delay tradeoff: buffer starvation less likely

with larger delay, but larger delay until user begins
watching

video server

Streaming multimedia: HT TP

* multimedia file retrieved via HTTP GET
" send at maximum possible rate under TCP

i variable

video TCP send TCP receive application
file buffer buffer playout buffer
server client

* Fill rate fluctuates due to TCP congestion control,
retransmissions (in-order delivery)

= Reposition / pause easier
= HTTP/TCP passes more easily through firewalls

Streaming multimedia: UDP

= server sends at rate appropriate for client

* often: send rate = encoding rate = constant
rate

* transmission rate can be oblivious to
congestion levels

= UDP may not go through firewalls
= UDP streaming can fail to provide continuous
playout

= Separate control connection needed over which
the client sends commands regarding session
state changes (such as pause, resume, reposition,
etc.)

Multimedia networking: outline

9.1 multimedia networking applications
9.2 streaming stored video
9.3 voice-over-|P

9.4 protocols for real-time conversational
applications

9.5 network support for multimedia

Voice-over-IP (VolP)

* VolP end-end-delay requirement: needed to maintain
“conversational” aspect
* higher delays noticeable, impair interactivity
* < |50 msec: good
* > 400 msec bad

* includes application-level (packetization, playout),
network delays

" value-added services: call forwarding, screening,
recording, teleconference

VolP characteristics

= speaker’ s audio: alternating talk spurts, silent
periods.

* 64 kbps during talk spurt
* pkts generated only during talk spurts

* 20 msec chunks at 8 Kbytes/sec: 160 bytes of data
= application-layer header added to each chunk

* chunk+header encapsulated into UDP or TCP
segment

= application sends segment into socket every 20
msec during talkspurt

VolP: packet loss, delax

network loss: IP datagram lost due to network
congestion (router buffer overflow)

delay loss: IP datagram arrives too late for playout
at receiver

* delays: processing, queueing in network; end-system
(sender, receiver) delays

* typical maximum tolerable delay: 400 ms
loss tolerance: depending on voice encoding, loss

concealment, packet loss rates between |% and
0% can be tolerated

End-to-end delay

Delax jitter

constant bit — —

Cumulative data

~ rate client J constant bit
transmission reception | rate playout
| ’_l at client
| variable R =
network —— 3| _
delay 2|8
(jitter) <y

client playout time
- delay

" end-to-end delays of two consecutive packets:
difference can be more or less than 20 msec
(transmission time difference)

VolP: removing |itter

* Prepending each chunk with a timestamp.

* The sender stamps each chunk with the time at which
the chunk was generated.

" Delaying playout of chunks at the receiver.

* The playout delay of the received audio chunks must
be long enough so that most of the packets are
received before their scheduled playout times.

* This playout delay can either be fixed throughout the
duration of the audio session or vary adaptively during
the audio session lifetime.

VolIP: fixed playout delax

" receiver attempts to playout each chunk exactly g
msecs after chunk was generated.

* chunk has time stamp t: play out chunk at t+q

e chunk arrives after t+cl: data arrives too late
for playout: data “lost

* tradeoff in choosing q:
* large q: less packet loss
* small g: better interactive experience

VolIP: fixed playout delax

" sender generates packets every 20 msec during talk spurt.
= first packet received at time r

= first playout schedule: begins at p

= second playout schedule: begins at p’

packets

A

packets loss
generated “a

1 \ packets

received

playout schedule
p'-r

playout schedule
p-r

Adaptive playout delay (i)

= goal: low playout delay, low loss rate

" approach: adaptive playout delay adjustment:

* estimate network delay, adjust playout delay at
beginning of each talk spurt

* chunks still played out every 20 msec during talk spurt

" adaptively estimate packet delay: (EWMA -
exponentially weighted moving average):

d; = (1-0)di4 + a (r;— 1)

- N

delay estimate small constant, time received - time sent
after ith packet e.g. 0.1 \ (timestamp) |

|
measured delay of ith packet

Adaptive playout delay (2)

" also useful to estimate average deviation of delay, v, :

vV, = (1-B)v., + Blri—t;—d]

= estimates d, v; calculated for every received
packet, but used only at start of talk spurt

" for first packet in talk spurt, playout time is:
playout-time; = t;+ d;, + Kv,

" remaining packets in talkspurt are played out
periodically

Adaptive playout delay (3)

Q: How does receiver determine whether packet is
first in a talkspurt?

" if no loss, receiver looks at successive timestamps

* difference of successive stamps > 20 msec -->talk spurt
begins.

= with loss possible, receiver must look at both time
stamps and sequence numbers

* difference of successive stamps > 20 msec and sequence
numbers without gaps --> talk spurt begins.

Example (no loss)

Packet Timestamp

100 0Oms
101 20 ms
102 40 ms

103 200 ms (big jump!)

Jump of 160 ms — silence — start of new talkspurt.

Example (with loss handled correctly)

Packet Seq # Timestamp
100 1000 0

101 1001 20

102 1002 200

Example (loss scenario — not a talkspurt)

Packet Seq #
105 1000
106 1010
Here:

¢ Timestamp jump > 20 ms

e BUT sequence number gap exists X

So this is not a new talkspurt — it was packet loss.

Explanation

Timestamp jump

Sequence numbers continuous — No loss —

Start of talkspurt

Timestamp

200

VoiP: recovery from packet loss (1)

Challenge: recover from packet loss given small

tolerable delay between original transmission and
playout

= each ACK/NAK takes ~ one RTT
= alternative: Forward Error Correction (FEC)

* send enough bits to allow recovery without
retransmission

simple FEC

* for every group of n chunks, create redundant chunk by
exclusive OR-ing n original chunks

* send n+/ chunks, increasing bandwidth by factor [/n

" can reconstruct original n chunks if at most one lost chunk
from n+ | chunks, with playout delay

FEC example

Imagine tiny packets represented as 4-bit values:

ini

P1 = 1100 Suppose P2 is lost.
P2 = leo1e Receiver has:
Sender computes the XOR: * P1=1100
e FEC =0110
yaml
Recover P2:
FEC = P1 @ P2 yarml
= 1100 XOR 1010
= cdi P2 = FEC @ P1
= 9110 XOR 1100
Sender sends: = 1010

SCSS
Recovered exactly.

1100 (P1)
1010 (P2)
0110 (FEC)

VoiP: recovery from packet loss (2)

another FEC scheme:

= “piggyback lower |
quality stream”

1 | | 2 | | 3 | | 4 Oiriginal Stream

= send lower resolution [: | [[=] Redundancy
audio stream as ; ‘
redundant information —— [Packet Loss

" e.g.,nominal
stream PCM at 64 kbps —— —— —1— — e

and redundant stream
GSM at |3 kbps

" pon-consecutive loss: receiver can conceal loss

= generalization: can also append (n-1)st and (n-2)nd low-bit rate
chunk

VoiP: recovery from packet loss (3)

1

2

3

4

5

G

o

10

11 (12 13 (14 |15 | 1

Ciiginal Stream

Lh

Interleayed Stream

Packet Lioss

R econstmcted Steeam

interleaving to conceal loss:

audio chunks divided into
smaller units, e.g. four 5
msec units per 20 msec

audio chunk

packet contains small units

from different chunks

if packet lost, still have most
of every original chunk

no redundancy overhead,
but increases playout delay

Voice-over-|P: Skype

= proprietary application-
layer protocol (inferred Eg
via reverse engineering)

* encrypted msgs
Skype
* P2P components: login server

= clients: Skype peers W
connect directly to i supernode
| ' overlay
each other for VolIP call e% network

" super nodes (SN):
Skype peers with =
special functions S

Skype clients (SC)

WW

-_supernode (SN)

NAT: network address translation

NAT: all devices in local network share just one IPv4 address as
far as outside world is concerned

«— restof » | «— local network (e.g.,home
Internet network) 10.0.0/24

‘»r
10.0.0.1
138.76.29.7 10.0.04
| | -
@_ 10.0.0.
' ‘V
10.0.0.3

all datagrams leaving local network have datagrams with source or destination in
same source NAT IP address: 138.76.29.7, this network have 10.0.0/24 address for
but different source port numbers source, destination (as usual)

NAT: network address translation

NAT translation table

1: host 10.0.0.1 d
2: NAT router changes WAN side addr LAN side addr dataogram to >enas
datagram source address 138.76.29.7, 5001 |10.0.0.1, 3345 128.119.40.186. 80
from 10.0.0.1, 3345 to P ’
138.76.29.7, 5001, [~ —71 o

updates table

‘ 5:10.0.0.1,3345 '
D: 128.119.40.186,80 | \
—> 10.0.0.1
@ S: 138.76.29.7, 5001 ':| \
D: 128.119.40.186,80 10.0.0.4 '
o 10.0.0_.¥-

-
138.76.29.7] E’ 5:128.119.40.186, 80 @ .
" 5:128.119.40.186, 80 _@ -2:10.0.0.1,3345 10.0.0.3
[D: 138.76.29.7,5001
3: reply arrives, destination
address: 138.76.29.7, 5001

P2P voice-over-IP: SkXEe

Skype client operation:

| joins Skype network by !
contacting SN using TCP | %
Skype

2. logs-in (username, login gerver
password) to centralized ;
Skype login server |

3. obtains IP address for e'&-:_ ey 2

callee from SN

"/
4. initiate call directly to E{%

callee

SkXEe: peers as relaxs

= problem: both Alice, Bob
are behind “NATs”

* NAT prevents outside peer
from initiating connection to
insider peer

* inside peer can initiate
connection to outside

" relay solution:Alice, Bob
maintain open connection

to their SNs

* Alice signals her SN to connect
to Bob

e Alice’ s SN connects to Bob’ s
SN

« Bob’ s SN connects to Bob over
open connection Bob initially
initiated to his SN

	Slide 1: Τεχνολογίες Διαδικτύου 2025-26 (DIT315)
	Slide 2
	Slide 3: Multimedia networking: outline
	Slide 4: Παλμοκωδική διαμόρφωση (PCM)
	Slide 5: Multimedia: audio
	Slide 6: Multimedia: audio
	Slide 7: Multimedia: video
	Slide 8: Multimedia: video
	Slide 9: Multimedia networking: 3 application types
	Slide 10: Multimedia networking: outline
	Slide 11: Streaming stored video:
	Slide 12: Streaming stored video: challenges
	Slide 13: Streaming stored video
	Slide 14: Streaming stored video: playout buffering
	Slide 15: Client-side buffering, playout
	Slide 16: Client-side buffering, playout
	Slide 17: Client-side buffering, playout
	Slide 18: Streaming multimedia: HTTP
	Slide 19: Streaming multimedia: UDP
	Slide 20: Multimedia networking: outline
	Slide 21: Voice-over-IP (VoIP)
	Slide 22: VoIP characteristics
	Slide 23: VoIP: packet loss, delay
	Slide 24: Delay jitter
	Slide 25: VoIP: removing Jitter
	Slide 26: VoIP: fixed playout delay
	Slide 27: VoIP: fixed playout delay
	Slide 28: Adaptive playout delay (1)
	Slide 29: Adaptive playout delay (2)
	Slide 30: Adaptive playout delay (3)
	Slide 31
	Slide 32: VoiP: recovery from packet loss (1)
	Slide 33: FEC example
	Slide 34: VoiP: recovery from packet loss (2)
	Slide 35: VoiP: recovery from packet loss (3)
	Slide 36: Voice-over-IP: Skype
	Slide 37: NAT: network address translation
	Slide 38: NAT: network address translation
	Slide 39: P2P voice-over-IP: Skype
	Slide 40: Skype: peers as relays

