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Chapter 5
Network Layer:
Control Plane
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copyright of this material.
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Thanks and enjoy!  JFK/KWR

     All material copyright 1996-2023
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Network layer control plane: our goals

▪understand principles 
behind network control 
plane:
• traditional routing algorithms

• SDN controllers

• network management, 
configuration

▪ instantiation, implementation 
in the Internet:
• OSPF, BGP

• OpenFlow, ODL and ONOS 
controllers

• Internet Control Message 
Protocol: ICMP

• SNMP, YANG/NETCONF
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Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 

Network Layer: 5-4



Two approaches to structuring network control plane:
▪ per-router control (traditional)

▪ logically centralized control (software defined networking)

Network-layer functions

Network Layer: 5-5

▪ forwarding: move packets from router’s 
input to appropriate router output

data plane

control plane▪ routing: determine route taken by 
packets from source to destination



Per-router control plane
Individual routing algorithm components in each and every 
router interact in the control plane

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving 

packet header

3
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Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving 

packet header
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Per-router 
control plane

SDN control plane



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 
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Routing protocol goal: determine 
“good” paths (equivalently, routes), 
from sending hosts to receiving host, 
through network of routers

▪ path: sequence of routers packets 
traverse from given initial source host 
to final destination host

▪ “good”: least “cost”, “fastest”, “least 
congested”

▪ routing: a “top-10” networking 
challenge!

Routing protocols
mobile network

enterprise
          network

national or global ISP

datacenter 
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical
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Graph abstraction: link costs

Network Layer: 5-11
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graph: G = (N,E)

ca,b: cost of direct link connecting a and b
             e.g., cw,z = 5, cu,z = ∞

cost defined by network operator: 
could always be 1, or inversely related 
to bandwidth, or inversely related to 
congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }



Routing algorithm classification
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global or decentralized information?

global: all routers have complete 
topology, link cost info
• “link state” algorithms

decentralized: iterative process of 
computation, exchange of info with neighbors
• routers initially only know link costs to 

attached neighbors
• “distance vector” algorithms

How fast 
do routes 
change?

dynamic: routes change 
more quickly
• periodic updates or in 

response to link cost 
changes

static: routes change 
slowly over time



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 

Network Layer: 5-13



Dijkstra’s link-state routing algorithm

Network Layer: 5-14

▪ centralized: network topology, link 
costs known to all nodes
• accomplished via “link state 

broadcast” 

• all nodes have same info

▪ computes least cost paths from one 
node (“source”) to all other nodes
• gives forwarding table for that node

▪ iterative: after k iterations, know 
least cost path to k destinations

▪ cx,y: direct link cost from 
node x to y;  = ∞ if not direct 
neighbors

▪ D(v): current estimate of cost 
of least-cost-path from source 
to destination v

▪ p(v): predecessor node along 
path from source to v

▪ N': set of nodes whose least-
cost-path definitively known

notation



Dijkstra’s link-state routing algorithm
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1  Initialization: 
2   N' = {u}                               /* compute least cost path from u to all other nodes */

3    for all nodes v 
4      if v adjacent to u            /* u initially knows direct-path-cost only to  direct neighbors    */

5          then D(v) = cu,v      /* but may not be minimum cost!                                                    */

6      else D(v) = ∞ 
7 

8   Loop 
9     
10    
11
12
13
14
15  until all nodes in N' 

find w not in N' such that D(w) is a minimum 
add w to N' 
update D(v) for all v adjacent to w and not in N' : 
     D(v) = min ( D(v),  D(w) + cw,v  ) 
/* new least-path-cost to v is either old least-cost-path to v or known 

least-cost-path to w plus direct-cost from w to v */ 



Dijkstra’s algorithm: an example

Step
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N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)
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D(w),p(w)

5,u

4,x

3,y

3,y

5,u ∞∞1,u2,uu

v w x y z

Initialization (step 0): 
      For all a: if a adjacent to u then D(a) = cu,a 



Dijkstra’s algorithm: an example

Step

0
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4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

D(w),p(w)

5,u

4,x

3,y

3,y

5,u ∞∞1,u2,uu

8   Loop 
9     
10    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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Dijkstra’s algorithm: an example

Step

0
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N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

D(w),p(w)

5,u

4,x

3,y

3,y

5,u ∞∞1,u2,uu

8   Loop 
9     
10
11    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 

∞2,x4,x2,u

D(v) = min ( D(v), D(x) + cx,v ) = min(2, 1+2) = 2 
D(w) = min ( D(w), D(x) + cx,w ) = min (5, 1+3) = 4 
D(y) = min ( D(y), D(x) + cx,y ) = min(inf,1+1) = 2  



Dijkstra’s algorithm: an example

Step

0

1
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4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

D(w),p(w)

5,u

4,x

3,y

3,y

5,u ∞∞1,u2,uu

8   Loop 
9     
10
    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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uxy



Dijkstra’s algorithm: an example

Step

0

1

2

3
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N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8   Loop 
9     
10
11
    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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∞2,x4,x2,u
uxy

update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 

4,y3,y2,u

D(w) = min ( D(w), D(y) + cy,w ) = min (4, 2+1) = 3 
D(z) = min ( D(z), D(y) + cy,z ) = min(inf,2+2) = 4  



Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8   Loop 
9     
10
    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 

D(w) = min ( D(w), D(v) + cv,w ) = min (3, 2+3) = 3 

Dijkstra’s algorithm: an example
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 find a not in N' such that D(a) is a minimum 
 add a to N' 
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Dijkstra’s algorithm: an example

Step
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8   Loop 
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 find a not in N' such that D(a) is a minimum 
 add a to N' 
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update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 

D(z) = min ( D(z), D(w) + cw,z ) = min (4, 3+5) = 4 

Dijkstra’s algorithm: an example
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 find a not in N' such that D(a) is a minimum 
 add a to N' 
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Dijkstra’s algorithm: an example
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Dijkstra’s algorithm: an example

Step
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8   Loop 
9     
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 find a not in N' such that D(a) is a minimum 
 add a to N' 
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update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 



Dijkstra’s algorithm: an example
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5,u

4,x

3,y

3,y

u

yx

wv

z

resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all 
other destinations 
via x 



Dijkstra’s algorithm: another example

Network Layer: 5-29

w3
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v
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u

5

3
7 4
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8

z
2
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9Step N'
D(v),
p(v)

0

1
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5

D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u

14,x 11,w 6,wuwx

uwxv 14,x 10,v 

uwxvy 12,y 

notes:
▪ construct least-cost-path tree by tracing predecessor nodes

▪ ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z



Dijkstra’s algorithm: oscillations possible
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▪ when link costs depend on traffic volume, route oscillations possible

a

d

c

b

1 1+e

e0

e

1
1

0 0

initially

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

a

d

c

b

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e1

0 0

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

▪ sample scenario:
• routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
• link costs are directional, and volume-dependent

e

1 1

e

1 1

e

1 1



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 

Network Layer: 5-32



Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm 

Network Layer: 5-33

Let Dx(y): cost of least-cost path from x to y.

Then:

   Dx(y) = minv { cx,v + Dv(y) }

   

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v



Bellman-Ford Example
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Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),

                    cu,x + Dx(z),

                    cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,

           1 + 3,

           5 + 3}  = 4

node achieving minimum (x) is 
next hop on estimated least-
cost path to destination (z)



Distance vector algorithm 

Network Layer: 5-35

key idea: 
▪ from time-to-time, each node sends its own distance vector estimate 

to neighbors

▪ under minor, natural conditions, the estimate Dx(y) converge to the 
actual least cost dx(y) 

Dx(y) ← minv{cx,v + Dv(y)}  for each node y ∊ N

▪ when x receives new DV estimate from any neighbor, it updates its 
own DV using B-F equation:



Distance vector algorithm:  

Network Layer: 5-36

iterative, asynchronous: each local 
iteration caused by: 

▪ local link cost change 

▪ DV update message from neighbor
wait for (change in local link 
cost or msg from neighbor)

each node:

distributed, self-stopping: each 
node notifies neighbors only when 
its DV changes

▪ neighbors then notify their 
neighbors – only if necessary

▪ no notification received, no 
actions taken!

recompute DV estimates using 
DV received from neighbor

if DV to any destination has 
changed, notify neighbors 



DV in a: 
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector: example

Network Layer: 5-37

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0

▪ All nodes have 
distance estimates 
to nearest 
neighbors (only)

A few asymmetries:
▪ missing link
▪ larger cost

d e f

a b c

▪ All nodes send 
their local 
distance vector to 
their neighbors



Distance vector example: iteration
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All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c



Distance vector example: iteration

Network Layer: 5-39

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=1

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=1



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=2



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=2

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration

Network Layer: 5-43

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=2



Distance vector example: iteration

Network Layer: 5-44

…. and so on

Let’s next take a look at the iterative computations at nodes



DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

Network Layer: 5-45

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ b receives DVs 
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation
DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞
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g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
▪ b receives DVs 

from a, c, e, 
computes:

a b c

d e f

DV in b:

Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)}  = min{8,∞,∞} = 8 

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)}  = min{∞,1,∞} = 1 

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)}  = min{9,2,∞} = 2 

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)}  = min{∞,∞,2} = 2 

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)}  = min{∞, ∞, ∞} = ∞ 

Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)}  = min{∞, ∞, 2} = 2 

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)}  = min{∞,∞,1} = 1 

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)}  = min{∞, ∞, ∞} = ∞ 



DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

Network Layer: 5-47

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs 
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation
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g h i

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs 
from b computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9 

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞ 

Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞ 

Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞ 

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞ 

Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞ 

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute

* Check out the online interactive 

exercises for more examples: 

http://gaia.cs.umass.edu/kurose_ross/interactive/



Distance vector example: computation
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1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ e receives DVs 
from b, d, f, h

a b c

DV in f:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = 0
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = 0
Dc(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞ 
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e at 
t=1?

compute



Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

c’s state at t=0 has propagated to b, and 
may influence distance vector computations 
up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence distance 
vector computations up to 2 hops away, i.e., 
at b and now at a, e as well

t=2

c’s state at t=0 may influence distance vector 
computations up to 3 hops away, i.e., at d, f, h

t=3

c’s state at t=0 may influence distance vector 
computations up to 4 hops away, i.e., at g, i

t=4

Iterative communication, computation steps diffuses information through network: 

t=1 

t=2 

t=3 

t=4 



Distance vector: another example
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time

x z

12

7

y

Dx()

Dx(y) = min{cx,y + Dy(y), cx,z+ Dz(y)}

= min{2+0 , 7+1} = 2

Dx(z) = min{cx,y+ Dy(z), cx,z+ Dz(z)} 

= min{2+1 , 7+0} = 3

32 
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Distance vector: another example
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Distance vector: link cost changes

“good news 
travels fast”

t0 : y detects link-cost change, updates its DV, informs its neighbors.

t1 : z receives update from y, updates its DV, computes new least cost 
to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its DV.  y’s least costs do not 
change, so y does not send a message to z. 

link cost changes:
▪ node detects local link cost change 

▪ updates routing info, recalculates local DV

▪ if DV changes, notify neighbors 

x z

14

50

y
1



Distance vector: link cost changes

link cost changes:
▪ node detects local link cost change 

▪ “bad news travels slow” – count-to-infinity 
problem:

x z

14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So 
y computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.

• z learns that path to x via y has new cost 6, so z  computes “my new cost to 
x will be 7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y  computes “my new cost to 
x will be 8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z  computes “my new cost to 
x will be 9 via y), notifies y of new cost of 9 to x.
…

▪ see text for solutions.  Distributed algorithms are tricky!



Network layer: “control plane” roadmap

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP

Network Layer: 5-56



our routing study thus far - idealized 
▪ all routers identical
▪ network “flat”

… not true in practice

Making routing scalable

Network Layer: 5-57

scale: billions of destinations:
▪ can’t store all destinations in 

routing tables!

▪ routing table exchange would 
swamp links! 

administrative autonomy:
▪ Internet: a network of networks

▪ each network admin may want to 
control routing in its own network



aggregate routers into regions known as “autonomous 
systems” (AS) (a.k.a. “domains”)

Internet approach to scalable routing

Network Layer: 5-58

intra-AS (aka “intra-domain”): 
routing among routers within same 
AS (“network”)
▪ all routers in AS must run same intra-

domain protocol
▪ routers in different AS can run different 

intra-domain routing protocols
▪ gateway router: at “edge” of its own AS, 

has link(s) to router(s) in other AS’es

inter-AS (aka “inter-domain”): 
routing among AS’es

▪ gateways perform inter-domain 
routing (as well as intra-domain 
routing)



Interconnected ASes

Network Layer: 5-59

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

forwarding
table

forwarding table configured by intra- 
and inter-AS routing algorithms

Intra-AS

Routing 
Inter-AS

Routing ▪ intra-AS routing determine entries for 
destinations within AS

▪ inter-AS & intra-AS determine entries 
for external destinations



Inter-AS routing:  a role in intradomain forwarding

Network Layer: 5-60

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3c

other

networks

other

networks

▪ suppose router in AS1 receives 
datagram destined outside of AS1:

AS1 inter-domain routing must:
1. learn which destinations reachable 

through AS2, which through AS3
2. propagate this reachability info to all 

routers in AS1

• router should forward packet to 
gateway router in AS1, but which 
one?



Intra-AS routing:  routing within an AS

Network Layer: 5-61

most common intra-AS routing protocols:

▪ RIP: Routing Information Protocol [RFC 1723]

• classic DV: DVs exchanged every 30 secs

• no longer widely used

▪ EIGRP: Enhanced Interior Gateway Routing Protocol
• DV based

• formerly Cisco-proprietary for decades (became open in 2013 [RFC 7868])

▪  OSPF: Open Shortest Path First  [RFC 2328]

• link-state routing

• IS-IS protocol (ISO standard, not RFC standard) essentially same as OSPF



OSPF (Open Shortest Path First) routing

Network Layer: 5-62

▪ “open”: publicly available

▪ classic link-state 
• each router floods OSPF link-state advertisements (directly over IP 

rather than using TCP/UDP) to all other routers in entire AS

• multiple link costs metrics possible: bandwidth, delay

• each router has full topology, uses Dijkstra’s algorithm to compute 
forwarding table

▪ security: all OSPF messages authenticated (to prevent malicious 
intrusion) 



Hierarchical OSPF

Network Layer: 5-63

▪ two-level hierarchy: local area, backbone.

• link-state advertisements flooded only in area, or backbone

• each node has detailed area topology; only knows direction to reach 
other destinations

area border routers: 
“summarize” distances  to 
destinations in own area, 
advertise in backbone

area 1

area 2

area 3

backbone

internal
routers

backbone router: 
runs OSPF limited 
to backbone

boundary router: 
connects to other ASes

local routers: 
• flood LS in area only
• compute routing within 

area
• forward packets to outside 

via area border router



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP
▪ SDN control plane

▪ Internet Control Message 
Protocol 

Network Layer: 5-64



Interconnected ASes

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

intra-AS (aka “intra-domain”): routing among routers within same 
AS (“network”)

inter-AS (aka “inter-domain”): routing among AS’es

Network Layer Control Plane: 5-65



▪ BGP (Border Gateway Protocol): the de facto inter-domain routing 
protocol

• “glue that holds the Internet together”

▪ allows subnet to advertise its existence, and the destinations it can 
reach, to rest of Internet: “I am here, here is who I can reach, and how”

▪ BGP provides each AS a means to:
• obtain destination network reachability info from neighboring ASes 

(eBGP)

• determine routes to other networks based on reachability information 
and policy

• propagate reachability information to all AS-internal routers (iBGP)

• advertise (to neighboring networks) destination reachability info

Internet inter-AS routing: BGP

Network Layer Control Plane: 5-66



eBGP, iBGP connections

Network Layer: 5-67

eBGP connectivity
logical iBGP connectivity

1b

1d

1c1a

2b

2d

2c2a
3b

3d

3c3a

AS 2

AS 3AS 1

1c

∂

∂

gateway routers run both eBGP and iBGP protocols



BGP basics

Network Layer: 5-68

▪ when AS3 gateway 3a advertises path AS3,X to AS2 gateway 2c:
• AS3 promises to AS2 it will forward datagrams towards X

▪ BGP session: two BGP routers (“peers”) exchange BGP messages over 
semi-permanent TCP connection:

• advertising paths to different destination network prefixes (BGP  is a “path 
vector” protocol)

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X
BGP advertisement:
AS3, X



BGP protocol messages

▪ BGP messages exchanged between peers over TCP connection

▪ BGP messages [RFC 4371]:

• OPEN: opens TCP connection to remote BGP peer and authenticates 
sending BGP peer

• UPDATE: advertises new path (or withdraws old)

• KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs 
OPEN request

• NOTIFICATION: reports errors in previous msg; also used to close 
connection



Path attributes and BGP routes

Network Layer: 5-70

▪ BGP advertised route: prefix + attributes 
• prefix: destination being advertised

• two important attributes:
• AS-PATH: list of ASes through which prefix advertisement has passed

• NEXT-HOP: indicates specific internal-AS router to next-hop AS

▪ policy-based routing:
• gateway receiving route advertisement uses import policy to 

accept/decline path (e.g., never route through AS Y).

• AS policy also determines whether to advertise path to other other 
neighboring ASes



2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-71

▪ based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP) to all 
AS2 routers

AS2,AS3,X 

▪ AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 3a

▪ based on AS2 policy,  AS2 router 2a advertises (via eBGP)  path AS2, AS3, X  to 
AS1 router 1c

AS3, X



Network Layer: 5-72

AS2,AS3,X 

▪ AS1 gateway router 1c learns path AS2,AS3,X from 2a

gateway router may learn about multiple paths to destination:

AS3,X

▪ AS1 gateway router 1c learns path AS3,X from 3a

▪ based on policy, AS1 gateway router 1c chooses path AS3,X and advertises path 
within AS1 via iBGP

AS3, X

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X
AS3,X

AS3,X

AS3,X

BGP path advertisement: multiple paths



BGP: achieving policy via advertisements

Network Layer: 5-73

B

legend:

customer 
network:

provider
network

▪ A advertises path Aw to B and to C

▪ B chooses not to advertise BAw to C!  

▪ B gets no “revenue” for routing CBAw, since none of  C, A, w are B’s customers

▪ C does not learn about CBAw path

▪ C will route CAw (not using B) to get to w

ISP only wants to route traffic to/from its customer networks (does not want 
to carry transit traffic between other ISPs – a typical “real world” policy)

w A

yC

x

A,w

A,w



BGP: achieving policy via advertisements (more)

Network Layer: 5-74

B

ISP only wants to route traffic to/from its customer networks (does not want 
to carry transit traffic between other ISPs – a typical “real world” policy)

w A

yC

x

▪ A,B,C are provider networks

▪ x,w,y are customer (of provider networks)

▪ x is dual-homed: attached to two networks

▪ policy to enforce: x does not want to route from B to C via x 

▪ .. so x will not advertise to B a route to C

legend:

customer 
network:

provider
network
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3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP: populating forwarding tables 

AS2,AS3,X 

AS3,X

AS3, X

▪ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”

▪ at 1d: OSPF intra-domain routing: to get to 1c, use  interface 1

12

1

2

dest interface

…

…

…

…

local link 
interfaces
at 1a, 1d

▪ at 1d: to get to X, use  interface 1
1c 1

X 1

AS3,X

AS3,X

AS3,X



2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP: populating forwarding tables 

▪ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”

▪ at 1d: OSPF intra-domain routing: to get to 1c, use  interface 1

1

2

▪ at 1d: to get to X, use  interface 1

dest interface

…

…

…

…

1c 2

X 2

▪ at 1a: OSPF intra-domain routing: to get to 1c, use  interface 2

▪ at 1a: to get to X, use  interface 2



2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

Hot potato routing

Network Layer: 5-77

▪ 2d learns (via iBGP) it can route to X via 2a or 2c

▪ hot potato routing: choose local gateway that has least intra-domain 
cost (e.g., 2d chooses 2a, even though more AS hops to X): don’t worry 
about inter-domain cost!

AS3,X AS1,AS3,X 

OSPF link weights

201

112

263



▪ router may learn about more than one route to destination 
AS, selects route based on:

1. local preference value attribute: policy decision

2. shortest AS-PATH 

3. closest NEXT-HOP router: hot potato routing

4. additional criteria 

BGP route selection

Network Layer: 5-78



Why different Intra-, Inter-AS routing ? 

Network Layer: 5-79

policy: 

▪ inter-AS: admin wants control over how its traffic routed, who 
routes through its network 

▪ intra-AS: single admin, so policy less of an issue

scale:

▪ hierarchical routing saves table size, reduced update traffic

performance: 

▪ intra-AS: can focus on performance

▪ inter-AS: policy dominates over performance



Network layer: “control plane” roadmap

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

Network Layer: 5-80


	Slide 1: Δίκτυα Υπολογιστών 2025-26 (DIT316)
	Slide 2
	Slide 3: Network layer control plane: our goals
	Slide 4: Network layer: “control plane” roadmap
	Slide 5: Network-layer functions
	Slide 6: Per-router control plane
	Slide 7: Software-Defined Networking (SDN) control plane
	Slide 8: Per-router control plane
	Slide 9: Network layer: “control plane” roadmap
	Slide 10: Routing protocols
	Slide 11: Graph abstraction: link costs
	Slide 12: Routing algorithm classification
	Slide 13: Network layer: “control plane” roadmap
	Slide 14: Dijkstra’s link-state routing algorithm
	Slide 15: Dijkstra’s link-state routing algorithm
	Slide 16: Dijkstra’s algorithm: an example
	Slide 17: Dijkstra’s algorithm: an example
	Slide 18: Dijkstra’s algorithm: an example
	Slide 19: Dijkstra’s algorithm: an example
	Slide 20: Dijkstra’s algorithm: an example
	Slide 21: Dijkstra’s algorithm: an example
	Slide 22: Dijkstra’s algorithm: an example
	Slide 23: Dijkstra’s algorithm: an example
	Slide 24: Dijkstra’s algorithm: an example
	Slide 25: Dijkstra’s algorithm: an example
	Slide 26: Dijkstra’s algorithm: an example
	Slide 28: Dijkstra’s algorithm: an example
	Slide 29: Dijkstra’s algorithm: another example
	Slide 31: Dijkstra’s algorithm: oscillations possible
	Slide 32: Network layer: “control plane” roadmap
	Slide 33: Distance vector algorithm 
	Slide 34: Bellman-Ford Example
	Slide 35: Distance vector algorithm 
	Slide 36: Distance vector algorithm:  
	Slide 37: Distance vector: example
	Slide 38: Distance vector example: iteration
	Slide 39: Distance vector example: iteration
	Slide 40: Distance vector example: iteration
	Slide 41: Distance vector example: iteration
	Slide 42: Distance vector example: iteration
	Slide 43: Distance vector example: iteration
	Slide 44: Distance vector example: iteration
	Slide 45: Distance vector example: computation
	Slide 46: Distance vector example: computation
	Slide 47: Distance vector example: computation
	Slide 48: Distance vector example: computation
	Slide 49: Distance vector example: computation
	Slide 50: Distance vector: state information diffusion
	Slide 51: Distance vector: another example
	Slide 52: Distance vector: another example
	Slide 53: Distance vector: link cost changes
	Slide 54: Distance vector: link cost changes
	Slide 56: Network layer: “control plane” roadmap
	Slide 57: Making routing scalable
	Slide 58: Internet approach to scalable routing
	Slide 59: Interconnected ASes
	Slide 60: Inter-AS routing:  a role in intradomain forwarding
	Slide 61: Intra-AS routing:  routing within an AS
	Slide 62: OSPF (Open Shortest Path First) routing
	Slide 63: Hierarchical OSPF
	Slide 64: Network layer: “control plane” roadmap
	Slide 65: Interconnected ASes
	Slide 66: Internet inter-AS routing: BGP
	Slide 67: eBGP, iBGP connections
	Slide 68: BGP basics
	Slide 69: BGP protocol messages
	Slide 70: Path attributes and BGP routes
	Slide 71: BGP path advertisement
	Slide 72: BGP path advertisement: multiple paths
	Slide 73: BGP: achieving policy via advertisements
	Slide 74: BGP: achieving policy via advertisements (more)
	Slide 75: BGP: populating forwarding tables 
	Slide 76: BGP: populating forwarding tables 
	Slide 77: Hot potato routing
	Slide 78: BGP route selection
	Slide 79: Why different Intra-, Inter-AS routing ? 
	Slide 80: Network layer: “control plane” roadmap

