
Δίκτυα Υπολογιστών
2025-26 (DIT316)

Δρ. Ειρήνη Λιώτου

eliotou@hua.gr

21/11/2025

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

mailto:eliotou@hua.gr

Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Chapter 5
Network Layer:
Control Plane
A note on the use of these PowerPoint slides:
We’re making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a lot of work on our part.
In return for use, we only ask the following:

▪ If you use these slides (e.g., in a class) that you mention their
source (after all, we’d like people to use our book!)

▪ If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2023
 J.F Kurose and K.W. Ross, All Rights Reserved

Network layer control plane: our goals

▪understand principles
behind network control
plane:
• traditional routing algorithms

• SDN controllers

• network management,
configuration

▪ instantiation, implementation
in the Internet:
• OSPF, BGP

• OpenFlow, ODL and ONOS
controllers

• Internet Control Message
Protocol: ICMP

• SNMP, YANG/NETCONF

Network Layer: 5-3

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Network Layer: 5-4

Two approaches to structuring network control plane:
▪ per-router control (traditional)

▪ logically centralized control (software defined networking)

Network-layer functions

Network Layer: 5-5

▪ forwarding: move packets from router’s
input to appropriate router output

data plane

control plane▪ routing: determine route taken by
packets from source to destination

Per-router control plane
Individual routing algorithm components in each and every
router interact in the control plane

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving

packet header

3

Network Layer: 5-6

Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving

packet header

Network Layer: 5-7

Per-router
control plane

SDN control plane

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Network Layer: 5-9

Routing protocol goal: determine
“good” paths (equivalently, routes),
from sending hosts to receiving host,
through network of routers

▪ path: sequence of routers packets
traverse from given initial source host
to final destination host

▪ “good”: least “cost”, “fastest”, “least
congested”

▪ routing: a “top-10” networking
challenge!

Routing protocols
mobile network

enterprise
 network

national or global ISP

datacenter
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical

Network Layer: 5-10

Graph abstraction: link costs

Network Layer: 5-11

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

graph: G = (N,E)

ca,b: cost of direct link connecting a and b
 e.g., cw,z = 5, cu,z = ∞

cost defined by network operator:
could always be 1, or inversely related
to bandwidth, or inversely related to
congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Routing algorithm classification

Network Layer: 5-12
global or decentralized information?

global: all routers have complete
topology, link cost info
• “link state” algorithms

decentralized: iterative process of
computation, exchange of info with neighbors
• routers initially only know link costs to

attached neighbors
• “distance vector” algorithms

How fast
do routes
change?

dynamic: routes change
more quickly
• periodic updates or in

response to link cost
changes

static: routes change
slowly over time

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Network Layer: 5-13

Dijkstra’s link-state routing algorithm

Network Layer: 5-14

▪ centralized: network topology, link
costs known to all nodes
• accomplished via “link state

broadcast”

• all nodes have same info

▪ computes least cost paths from one
node (“source”) to all other nodes
• gives forwarding table for that node

▪ iterative: after k iterations, know
least cost path to k destinations

▪ cx,y: direct link cost from
node x to y; = ∞ if not direct
neighbors

▪ D(v): current estimate of cost
of least-cost-path from source
to destination v

▪ p(v): predecessor node along
path from source to v

▪ N': set of nodes whose least-
cost-path definitively known

notation

Dijkstra’s link-state routing algorithm

Network Layer: 5-15

1 Initialization:
2 N' = {u} /* compute least cost path from u to all other nodes */

3 for all nodes v
4 if v adjacent to u /* u initially knows direct-path-cost only to direct neighbors */

5 then D(v) = cu,v /* but may not be minimum cost! */

6 else D(v) = ∞
7

8 Loop
9
10
11
12
13
14
15 until all nodes in N'

find w not in N' such that D(w) is a minimum
add w to N'
update D(v) for all v adjacent to w and not in N' :
 D(v) = min (D(v), D(w) + cw,v)
/* new least-path-cost to v is either old least-cost-path to v or known

least-cost-path to w plus direct-cost from w to v */

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

D(w),p(w)

D(w),p(w)

5,u

4,x

3,y

3,y

5,u ∞∞1,u2,uu

v w x y z

Initialization (step 0):
 For all a: if a adjacent to u then D(a) = cu,a

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

D(w),p(w)

5,u

4,x

3,y

3,y

5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

D(w),p(w)

5,u

4,x

3,y

3,y

5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

∞2,x4,x2,u

D(v) = min (D(v), D(x) + cx,v) = min(2, 1+2) = 2
D(w) = min (D(w), D(x) + cx,w) = min (5, 1+3) = 4
D(y) = min (D(y), D(x) + cx,y) = min(inf,1+1) = 2

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

D(w),p(w)

5,u

4,x

3,y

3,y

5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

4,y3,y2,u

D(w) = min (D(w), D(y) + cy,w) = min (4, 2+1) = 3
D(z) = min (D(z), D(y) + cy,z) = min(inf,2+2) = 4

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

D(w) = min (D(w), D(v) + cv,w) = min (3, 2+3) = 3

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

uxyvw

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

D(z) = min (D(z), D(w) + cw,z) = min (4, 3+5) = 4

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

uxyvw 4,y

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

uxyvw 4,y
uxyvwz

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

uxyvw 4,y
uxyvwz

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

Dijkstra’s algorithm: an example

Network Layer: 5-28

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

D(w),p(w)

5,u

4,x

3,y

3,y

u

yx

wv

z

resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all
other destinations
via x

Dijkstra’s algorithm: another example

Network Layer: 5-29

w3

4

v

x

u

5

3
7 4

y

8

z
2

7

9Step N'
D(v),
p(v)

0

1

2

3

4

5

D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u

14,x 11,w 6,wuwx

uwxv 14,x 10,v

uwxvy 12,y

notes:
▪ construct least-cost-path tree by tracing predecessor nodes

▪ ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z

Dijkstra’s algorithm: oscillations possible

Network Layer: 5-31

▪ when link costs depend on traffic volume, route oscillations possible

a

d

c

b

1 1+e

e0

e

1
1

0 0

initially

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

a

d

c

b

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e1

0 0

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

▪ sample scenario:
• routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
• link costs are directional, and volume-dependent

e

1 1

e

1 1

e

1 1

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Network Layer: 5-32

Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm

Network Layer: 5-33

Let Dx(y): cost of least-cost path from x to y.

Then:

 Dx(y) = minv { cx,v + Dv(y) }

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v

Bellman-Ford Example

Network Layer: 5-34

u

y

z

2

2

1
3

1

1

2

5
3

5

Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),

 cu,x + Dx(z),

 cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,

 1 + 3,

 5 + 3} = 4

node achieving minimum (x) is
next hop on estimated least-
cost path to destination (z)

Distance vector algorithm

Network Layer: 5-35

key idea:
▪ from time-to-time, each node sends its own distance vector estimate

to neighbors

▪ under minor, natural conditions, the estimate Dx(y) converge to the
actual least cost dx(y)

Dx(y) ← minv{cx,v + Dv(y)} for each node y ∊ N

▪ when x receives new DV estimate from any neighbor, it updates its
own DV using B-F equation:

Distance vector algorithm:

Network Layer: 5-36

iterative, asynchronous: each local
iteration caused by:

▪ local link cost change

▪ DV update message from neighbor
wait for (change in local link
cost or msg from neighbor)

each node:

distributed, self-stopping: each
node notifies neighbors only when
its DV changes

▪ neighbors then notify their
neighbors – only if necessary

▪ no notification received, no
actions taken!

recompute DV estimates using
DV received from neighbor

if DV to any destination has
changed, notify neighbors

DV in a:
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector: example

Network Layer: 5-37

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0

▪ All nodes have
distance estimates
to nearest
neighbors (only)

A few asymmetries:
▪ missing link
▪ larger cost

d e f

a b c

▪ All nodes send
their local
distance vector to
their neighbors

Distance vector example: iteration

Network Layer: 5-38

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

Distance vector example: iteration

Network Layer: 5-39

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=1

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

Network Layer: 5-40

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=1

Distance vector example: iteration

Network Layer: 5-41

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=2

Distance vector example: iteration

Network Layer: 5-42

g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=2

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

Network Layer: 5-43

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=2

Distance vector example: iteration

Network Layer: 5-44

…. and so on

Let’s next take a look at the iterative computations at nodes

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

Network Layer: 5-45

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ b receives DVs
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation
DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Network Layer: 5-46

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
▪ b receives DVs

from a, c, e,
computes:

a b c

d e f

DV in b:

Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)} = min{8,∞,∞} = 8

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)} = min{∞,1,∞} = 1

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)} = min{9,2,∞} = 2

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)} = min{∞,∞,2} = 2

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)} = min{∞, ∞, ∞} = ∞

Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)} = min{∞, ∞, 2} = 2

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)} = min{∞,∞,1} = 1

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)} = min{∞, ∞, ∞} = ∞

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

Network Layer: 5-47

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation

Network Layer: 5-48

g h i

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs
from b computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞

Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞

Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞

Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute

* Check out the online interactive

exercises for more examples:

http://gaia.cs.umass.edu/kurose_ross/interactive/

Distance vector example: computation

Network Layer: 5-49

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ e receives DVs
from b, d, f, h

a b c

DV in f:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = 0
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = 0
Dc(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e at
t=1?

compute

Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

c’s state at t=0 has propagated to b, and
may influence distance vector computations
up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence distance
vector computations up to 2 hops away, i.e.,
at b and now at a, e as well

t=2

c’s state at t=0 may influence distance vector
computations up to 3 hops away, i.e., at d, f, h

t=3

c’s state at t=0 may influence distance vector
computations up to 4 hops away, i.e., at g, i

t=4

Iterative communication, computation steps diffuses information through network:

t=1

t=2

t=3

t=4

Distance vector: another example

Network Layer: 5-51

x y z

x

y

z

0 2 7

∞ ∞ ∞

∞ ∞ ∞

fr
o

m

cost to

fr
o

m
fr

o
m

x y z

x

y

z

0

x y z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x y z

x

y

z
∞ ∞ ∞

7 1 0

cost to

∞

2 0 1

∞ ∞ ∞

2 0 1

7 1 0

time

x z

12

7

y

Dx()

Dx(y) = min{cx,y + Dy(y), cx,z+ Dz(y)}

= min{2+0 , 7+1} = 2

Dx(z) = min{cx,y+ Dy(z), cx,z+ Dz(z)}

= min{2+1 , 7+0} = 3

32

Dy()

Dz()

cost to

fr
o

m

Distance vector: another example

Network Layer: 5-52

x y z

x

y

z

0 2 7

∞ ∞ ∞

∞ ∞ ∞

cost to

fr
o

m
fr

o
m

x y z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x y z

x

y

z
∞ ∞ ∞

7 1 0

cost to

∞

2 0 1

∞ ∞ ∞

x z

12

7

y

Dx()

Dy()

Dz()

fr
o

m
x y z

x

y

z

0 2 3

fr
o

m

cost to

x y z

x

y

z

0 2 7
fr

o
m

cost to

x y z

x

y

z

0 2 3

fr
o

m

cost to

x y z

x

y

z

0 2 3

fr
o
m

cost to
x y z

x

y

z

0 2 7

fr
o
m

cost to

2 0 1

7 1 0

2 0 1

3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

fr
o

m

x y z

x

y

z

0

2 0 1

7 1 0

32

cost to

time

Distance vector: link cost changes

“good news
travels fast”

t0 : y detects link-cost change, updates its DV, informs its neighbors.

t1 : z receives update from y, updates its DV, computes new least cost
to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its DV. y’s least costs do not
change, so y does not send a message to z.

link cost changes:
▪ node detects local link cost change

▪ updates routing info, recalculates local DV

▪ if DV changes, notify neighbors

x z

14

50

y
1

Distance vector: link cost changes

link cost changes:
▪ node detects local link cost change

▪ “bad news travels slow” – count-to-infinity
problem:

x z

14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So
y computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.

• z learns that path to x via y has new cost 6, so z computes “my new cost to
x will be 7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y computes “my new cost to
x will be 8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z computes “my new cost to
x will be 9 via y), notifies y of new cost of 9 to x.
…

▪ see text for solutions. Distributed algorithms are tricky!

Network layer: “control plane” roadmap

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP

Network Layer: 5-56

our routing study thus far - idealized
▪ all routers identical
▪ network “flat”

… not true in practice

Making routing scalable

Network Layer: 5-57

scale: billions of destinations:
▪ can’t store all destinations in

routing tables!

▪ routing table exchange would
swamp links!

administrative autonomy:
▪ Internet: a network of networks

▪ each network admin may want to
control routing in its own network

aggregate routers into regions known as “autonomous
systems” (AS) (a.k.a. “domains”)

Internet approach to scalable routing

Network Layer: 5-58

intra-AS (aka “intra-domain”):
routing among routers within same
AS (“network”)
▪ all routers in AS must run same intra-

domain protocol
▪ routers in different AS can run different

intra-domain routing protocols
▪ gateway router: at “edge” of its own AS,

has link(s) to router(s) in other AS’es

inter-AS (aka “inter-domain”):
routing among AS’es

▪ gateways perform inter-domain
routing (as well as intra-domain
routing)

Interconnected ASes

Network Layer: 5-59

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

forwarding
table

forwarding table configured by intra-
and inter-AS routing algorithms

Intra-AS

Routing
Inter-AS

Routing ▪ intra-AS routing determine entries for
destinations within AS

▪ inter-AS & intra-AS determine entries
for external destinations

Inter-AS routing: a role in intradomain forwarding

Network Layer: 5-60

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3c

other

networks

other

networks

▪ suppose router in AS1 receives
datagram destined outside of AS1:

AS1 inter-domain routing must:
1. learn which destinations reachable

through AS2, which through AS3
2. propagate this reachability info to all

routers in AS1

• router should forward packet to
gateway router in AS1, but which
one?

Intra-AS routing: routing within an AS

Network Layer: 5-61

most common intra-AS routing protocols:

▪ RIP: Routing Information Protocol [RFC 1723]

• classic DV: DVs exchanged every 30 secs

• no longer widely used

▪ EIGRP: Enhanced Interior Gateway Routing Protocol
• DV based

• formerly Cisco-proprietary for decades (became open in 2013 [RFC 7868])

▪ OSPF: Open Shortest Path First [RFC 2328]

• link-state routing

• IS-IS protocol (ISO standard, not RFC standard) essentially same as OSPF

OSPF (Open Shortest Path First) routing

Network Layer: 5-62

▪ “open”: publicly available

▪ classic link-state
• each router floods OSPF link-state advertisements (directly over IP

rather than using TCP/UDP) to all other routers in entire AS

• multiple link costs metrics possible: bandwidth, delay

• each router has full topology, uses Dijkstra’s algorithm to compute
forwarding table

▪ security: all OSPF messages authenticated (to prevent malicious
intrusion)

Hierarchical OSPF

Network Layer: 5-63

▪ two-level hierarchy: local area, backbone.

• link-state advertisements flooded only in area, or backbone

• each node has detailed area topology; only knows direction to reach
other destinations

area border routers:
“summarize” distances to
destinations in own area,
advertise in backbone

area 1

area 2

area 3

backbone

internal
routers

backbone router:
runs OSPF limited
to backbone

boundary router:
connects to other ASes

local routers:
• flood LS in area only
• compute routing within

area
• forward packets to outside

via area border router

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP
▪ SDN control plane

▪ Internet Control Message
Protocol

Network Layer: 5-64

Interconnected ASes

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

intra-AS (aka “intra-domain”): routing among routers within same
AS (“network”)

inter-AS (aka “inter-domain”): routing among AS’es

Network Layer Control Plane: 5-65

▪ BGP (Border Gateway Protocol): the de facto inter-domain routing
protocol

• “glue that holds the Internet together”

▪ allows subnet to advertise its existence, and the destinations it can
reach, to rest of Internet: “I am here, here is who I can reach, and how”

▪ BGP provides each AS a means to:
• obtain destination network reachability info from neighboring ASes

(eBGP)

• determine routes to other networks based on reachability information
and policy

• propagate reachability information to all AS-internal routers (iBGP)

• advertise (to neighboring networks) destination reachability info

Internet inter-AS routing: BGP

Network Layer Control Plane: 5-66

eBGP, iBGP connections

Network Layer: 5-67

eBGP connectivity
logical iBGP connectivity

1b

1d

1c1a

2b

2d

2c2a
3b

3d

3c3a

AS 2

AS 3AS 1

1c

∂

∂

gateway routers run both eBGP and iBGP protocols

BGP basics

Network Layer: 5-68

▪ when AS3 gateway 3a advertises path AS3,X to AS2 gateway 2c:
• AS3 promises to AS2 it will forward datagrams towards X

▪ BGP session: two BGP routers (“peers”) exchange BGP messages over
semi-permanent TCP connection:

• advertising paths to different destination network prefixes (BGP is a “path
vector” protocol)

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X
BGP advertisement:
AS3, X

BGP protocol messages

▪ BGP messages exchanged between peers over TCP connection

▪ BGP messages [RFC 4371]:

• OPEN: opens TCP connection to remote BGP peer and authenticates
sending BGP peer

• UPDATE: advertises new path (or withdraws old)

• KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs
OPEN request

• NOTIFICATION: reports errors in previous msg; also used to close
connection

Path attributes and BGP routes

Network Layer: 5-70

▪ BGP advertised route: prefix + attributes
• prefix: destination being advertised

• two important attributes:
• AS-PATH: list of ASes through which prefix advertisement has passed

• NEXT-HOP: indicates specific internal-AS router to next-hop AS

▪ policy-based routing:
• gateway receiving route advertisement uses import policy to

accept/decline path (e.g., never route through AS Y).

• AS policy also determines whether to advertise path to other other
neighboring ASes

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-71

▪ based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP) to all
AS2 routers

AS2,AS3,X

▪ AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 3a

▪ based on AS2 policy, AS2 router 2a advertises (via eBGP) path AS2, AS3, X to
AS1 router 1c

AS3, X

Network Layer: 5-72

AS2,AS3,X

▪ AS1 gateway router 1c learns path AS2,AS3,X from 2a

gateway router may learn about multiple paths to destination:

AS3,X

▪ AS1 gateway router 1c learns path AS3,X from 3a

▪ based on policy, AS1 gateway router 1c chooses path AS3,X and advertises path
within AS1 via iBGP

AS3, X

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X
AS3,X

AS3,X

AS3,X

BGP path advertisement: multiple paths

BGP: achieving policy via advertisements

Network Layer: 5-73

B

legend:

customer
network:

provider
network

▪ A advertises path Aw to B and to C

▪ B chooses not to advertise BAw to C!

▪ B gets no “revenue” for routing CBAw, since none of C, A, w are B’s customers

▪ C does not learn about CBAw path

▪ C will route CAw (not using B) to get to w

ISP only wants to route traffic to/from its customer networks (does not want
to carry transit traffic between other ISPs – a typical “real world” policy)

w A

yC

x

A,w

A,w

BGP: achieving policy via advertisements (more)

Network Layer: 5-74

B

ISP only wants to route traffic to/from its customer networks (does not want
to carry transit traffic between other ISPs – a typical “real world” policy)

w A

yC

x

▪ A,B,C are provider networks

▪ x,w,y are customer (of provider networks)

▪ x is dual-homed: attached to two networks

▪ policy to enforce: x does not want to route from B to C via x

▪ .. so x will not advertise to B a route to C

legend:

customer
network:

provider
network

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP: populating forwarding tables

AS2,AS3,X

AS3,X

AS3, X

▪ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”

▪ at 1d: OSPF intra-domain routing: to get to 1c, use interface 1

12

1

2

dest interface

…

…

…

…

local link
interfaces
at 1a, 1d

▪ at 1d: to get to X, use interface 1
1c 1

X 1

AS3,X

AS3,X

AS3,X

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP: populating forwarding tables

▪ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”

▪ at 1d: OSPF intra-domain routing: to get to 1c, use interface 1

1

2

▪ at 1d: to get to X, use interface 1

dest interface

…

…

…

…

1c 2

X 2

▪ at 1a: OSPF intra-domain routing: to get to 1c, use interface 2

▪ at 1a: to get to X, use interface 2

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

Hot potato routing

Network Layer: 5-77

▪ 2d learns (via iBGP) it can route to X via 2a or 2c

▪ hot potato routing: choose local gateway that has least intra-domain
cost (e.g., 2d chooses 2a, even though more AS hops to X): don’t worry
about inter-domain cost!

AS3,X AS1,AS3,X

OSPF link weights

201

112

263

▪ router may learn about more than one route to destination
AS, selects route based on:

1. local preference value attribute: policy decision

2. shortest AS-PATH

3. closest NEXT-HOP router: hot potato routing

4. additional criteria

BGP route selection

Network Layer: 5-78

Why different Intra-, Inter-AS routing ?

Network Layer: 5-79

policy:

▪ inter-AS: admin wants control over how its traffic routed, who
routes through its network

▪ intra-AS: single admin, so policy less of an issue

scale:

▪ hierarchical routing saves table size, reduced update traffic

performance:

▪ intra-AS: can focus on performance

▪ inter-AS: policy dominates over performance

Network layer: “control plane” roadmap

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

Network Layer: 5-80

	Slide 1: Δίκτυα Υπολογιστών 2025-26 (DIT316)
	Slide 2
	Slide 3: Network layer control plane: our goals
	Slide 4: Network layer: “control plane” roadmap
	Slide 5: Network-layer functions
	Slide 6: Per-router control plane
	Slide 7: Software-Defined Networking (SDN) control plane
	Slide 8: Per-router control plane
	Slide 9: Network layer: “control plane” roadmap
	Slide 10: Routing protocols
	Slide 11: Graph abstraction: link costs
	Slide 12: Routing algorithm classification
	Slide 13: Network layer: “control plane” roadmap
	Slide 14: Dijkstra’s link-state routing algorithm
	Slide 15: Dijkstra’s link-state routing algorithm
	Slide 16: Dijkstra’s algorithm: an example
	Slide 17: Dijkstra’s algorithm: an example
	Slide 18: Dijkstra’s algorithm: an example
	Slide 19: Dijkstra’s algorithm: an example
	Slide 20: Dijkstra’s algorithm: an example
	Slide 21: Dijkstra’s algorithm: an example
	Slide 22: Dijkstra’s algorithm: an example
	Slide 23: Dijkstra’s algorithm: an example
	Slide 24: Dijkstra’s algorithm: an example
	Slide 25: Dijkstra’s algorithm: an example
	Slide 26: Dijkstra’s algorithm: an example
	Slide 28: Dijkstra’s algorithm: an example
	Slide 29: Dijkstra’s algorithm: another example
	Slide 31: Dijkstra’s algorithm: oscillations possible
	Slide 32: Network layer: “control plane” roadmap
	Slide 33: Distance vector algorithm
	Slide 34: Bellman-Ford Example
	Slide 35: Distance vector algorithm
	Slide 36: Distance vector algorithm:
	Slide 37: Distance vector: example
	Slide 38: Distance vector example: iteration
	Slide 39: Distance vector example: iteration
	Slide 40: Distance vector example: iteration
	Slide 41: Distance vector example: iteration
	Slide 42: Distance vector example: iteration
	Slide 43: Distance vector example: iteration
	Slide 44: Distance vector example: iteration
	Slide 45: Distance vector example: computation
	Slide 46: Distance vector example: computation
	Slide 47: Distance vector example: computation
	Slide 48: Distance vector example: computation
	Slide 49: Distance vector example: computation
	Slide 50: Distance vector: state information diffusion
	Slide 51: Distance vector: another example
	Slide 52: Distance vector: another example
	Slide 53: Distance vector: link cost changes
	Slide 54: Distance vector: link cost changes
	Slide 56: Network layer: “control plane” roadmap
	Slide 57: Making routing scalable
	Slide 58: Internet approach to scalable routing
	Slide 59: Interconnected ASes
	Slide 60: Inter-AS routing: a role in intradomain forwarding
	Slide 61: Intra-AS routing: routing within an AS
	Slide 62: OSPF (Open Shortest Path First) routing
	Slide 63: Hierarchical OSPF
	Slide 64: Network layer: “control plane” roadmap
	Slide 65: Interconnected ASes
	Slide 66: Internet inter-AS routing: BGP
	Slide 67: eBGP, iBGP connections
	Slide 68: BGP basics
	Slide 69: BGP protocol messages
	Slide 70: Path attributes and BGP routes
	Slide 71: BGP path advertisement
	Slide 72: BGP path advertisement: multiple paths
	Slide 73: BGP: achieving policy via advertisements
	Slide 74: BGP: achieving policy via advertisements (more)
	Slide 75: BGP: populating forwarding tables
	Slide 76: BGP: populating forwarding tables
	Slide 77: Hot potato routing
	Slide 78: BGP route selection
	Slide 79: Why different Intra-, Inter-AS routing ?
	Slide 80: Network layer: “control plane” roadmap

