
Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Chapter 3
Transport Layer

A note on the use of these PowerPoint slides:
We’re making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a lot of work on our part.
In return for use, we only ask the following:

▪ If you use these slides (e.g., in a class) that you mention their
source (after all, we’d like people to use our book!)

▪ If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2023
 J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer: 3-1

Transport layer: overview

Our goal:

▪ understand principles
behind transport layer
services:
• multiplexing,

demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ learn about Internet transport
layer protocols:
• UDP: connectionless transport

• TCP: connection-oriented reliable
transport

• TCP congestion control

Transport Layer: 3-2

Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-3

Transport services and protocols

▪ provide logical communication
between application processes
running on different hosts

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application

transport

network

data link

physical

application

transport

network

data link

physical

▪ transport protocols actions in end
systems:
• sender: breaks application messages

into segments, passes to network layer

• receiver: reassembles segments into
messages, passes to application layer

▪ two transport protocols available to
Internet applications
• TCP, UDP

Transport Layer: 3-4

Transport vs. network layer services and protocols

household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

▪ hosts = houses
▪ processes = kids
▪ app messages = letters in

envelopes
▪ transport protocol = Ann and Bill

who demux to in-house siblings
▪ network-layer protocol = postal

service

Transport Layer: 3-5

Transport vs. network layer services and protocols

▪network layer:
communication between
hosts

household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

▪ hosts = houses
▪ processes = kids
▪ app messages = letters in

envelopes
▪ transport protocol = Ann and Bill

who demux to in-house siblings
▪ network-layer protocol = postal

service

Transport Layer: 3-6

▪transport layer:
communication between
processes

• relies on, enhances, network
layer services

Processes communicating

process: program
running within a host

▪ within same host, two
processes communicate
using inter-process
communication (defined by
OS)

▪ processes in different hosts
communicate by
exchanging messages

client process: process
that initiates
communication

server process: process
that waits to be contacted

▪ aside: applications with P2P

architectures have client

processes & server

processes

clients, servers

Sockets

▪ process sends/receives messages to/from its socket

▪ socket analogous to door

• sending process shoves message out door

• sending process relies on transport infrastructure on other
side of door to deliver message to socket at receiving
process

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Addressing processes

▪ to receive messages, a
process must have identifier

▪ host device has unique 32-
bit IP address

▪ Q: does IP address of host
on which process runs
suffice for identifying the
process?

▪ identifier includes both IP
address and port numbers
associated with process on
host.

▪ example port numbers:
• HTTP server: 80

• mail server: 25

▪ to send HTTP message to
gaia.cs.umass.edu web
server:
• IP address: 128.119.245.12

• port number: 80

▪ A: no, many processes
can be running on same
host

physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

Sender:
app. msg▪ is passed an application-

layer message
▪ determines segment

header fields values
▪ creates segment

▪ passes segment to IP

transport
ThTh app. msg

Transport Layer: 3-10

physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

transport

Receiver:

app. msg ▪ extracts application-layer
message

▪ checks header values

▪ receives segment from IP

Th app. msg

▪ demultiplexes message up
to application via socket

Transport Layer: 3-11

Two principal Internet transport protocols

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application

transport

network

data link

physical

application

transport

network

data link

physical

▪TCP: Transmission Control Protocol
• reliable, in-order delivery

• congestion control
• flow control
• connection setup

▪UDP: User Datagram Protocol
• unreliable, unordered delivery

• no-frills extension of “best-effort” IP

▪ services not available:
• delay guarantees
• bandwidth guarantees

Transport Layer: 3-12

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-13

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

HTTP server

client

HTTP msg

Transport Layer: 3-14

HTTP msgHt

HTTP msgHtHn

HTTP msgHtHn

HTTP msgHtHn

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

client

HTTP msgHt

HTTP msg

Transport Layer: 3-15

HTTP msg

Q: how did transport layer know to deliver message to Firefox
browser process rather than Netflix process or Skype process?

?

de-multiplexing

?

de-multiplexing

transport

application

Demultiplexing

multiplexing

multiplexing

transport

application

Multiplexing

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing as receiver:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing as sender:

Transport Layer: 3-24

How demultiplexing works

▪ host receives IP datagrams
• each datagram has source IP

address, destination IP address

• each datagram carries one
transport-layer segment

• each segment has source,
destination port number

▪ host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

Transport Layer: 3-25

Connectionless demultiplexing

▪ when creating socket, must
specify host-local port #:

 DatagramSocket mySocket1
= new DatagramSocket(12534);

when receiving host receives
UDP segment:
• checks destination port # in

segment
• directs UDP segment to

socket with that port #

▪ when creating datagram to
send into UDP socket, must
specify
• destination IP address

• destination port #

IP/UDP datagrams with same dest.
port #, but different source IP
addresses and/or source port

numbers will be directed to same
socket at receiving host

Transport Layer: 3-26

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

mySocket = socket(AF_INET,
SOCK_DGRAM)

mySocket.bind(myaddr,9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

A

B

C

D

mySocket = socket(AF_INET,
SOCK_DGRAM)

mySocket.bind(myaddr,5775);

mySocket =
socket(AF_INET,SOCK_DGRAM)

mySocket.bind(myaddr,6428);

Connectionless demultiplexing: an example

Connection-oriented demultiplexing

▪ TCP socket identified by
4-tuple:
• source IP address

• source port number

• dest IP address

• dest port number

▪ server may support many
simultaneous TCP sockets:
• each socket identified by its

own 4-tuple

• each socket associated with
a different connecting client

▪ demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

Transport Layer: 3-28

Connection-oriented demultiplexing: example

transport

application

physical

link

network

P1
transport

application

physical

link

P4

transport

application

physical

link

network

P2

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP
address B

Three segments, all destined to IP address: B,
 dest port: 80 are demultiplexed to different sockets

Transport Layer: 3-29

Summary

▪ Multiplexing, demultiplexing: based on segment, datagram
header field values

▪ UDP: demultiplexing using destination port number (only)

▪ TCP: demultiplexing using 4-tuple: source and destination IP
addresses, and port numbers

▪ Multiplexing/demultiplexing happen at all layers

Transport Layer: 3-30

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-31

UDP: User Datagram Protocol

▪ “no frills,” “bare bones”
Internet transport protocol

▪ “best effort” service, UDP
segments may be:
• lost
• delivered out-of-order to app

▪ no connection
establishment (which can
add RTT delay)

▪ simple: no connection state
at sender, receiver

▪ small header size

▪ no congestion control
▪ UDP can blast away as fast as

desired!

▪ can function in the face of
congestion

Why is there a UDP?

▪ connectionless:
• no handshaking between UDP

sender, receiver
• each UDP segment handled

independently of others
Transport Layer: 3-32

UDP: User Datagram Protocol

▪ UDP use:
▪ streaming multimedia apps (loss tolerant, rate sensitive)

▪ DNS

▪ SNMP

▪ HTTP/3

▪ if reliable transfer needed over UDP (e.g., HTTP/3):
▪ add needed reliability at application layer

▪ add congestion control at application layer

Transport Layer: 3-33

UDP: User Datagram Protocol [RFC 768]

Transport Layer: 3-34

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

transport

(UDP)

physical

link

network (IP)

application

Transport Layer: 3-35

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

UDP sender actions:
SNMP msg▪ is passed an application-

layer message
▪ determines UDP segment

header fields values
▪ creates UDP segment

▪ passes segment to IP

UDPhUDPh SNMP msg

Transport Layer: 3-36

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

UDP receiver actions:

SNMP msg
▪ extracts application-layer

message

▪ checks UDP checksum
header value

▪ receives segment from IP

UDPh SNMP msg
▪ demultiplexes message up

to application via socket

Transport Layer: 3-37

UDP segment header

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

data to/from
application layer

Transport Layer: 3-38

UDP checksum

Transmitted: 5 6 11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received: 4 6 11

1st number 2nd number sum

receiver-computed
checksum

sender-computed
checksum (as received)

=

Transport Layer: 3-39

Internet checksum

sender:
▪ treat contents of UDP

segment (including UDP header
fields and IP addresses) as
sequence of 16-bit integers

▪ checksum: addition (one’s
complement sum) of segment
content

▪ checksum value put into
UDP checksum field

receiver:
▪ compute checksum of received

segment

▪ check if computed checksum equals
checksum field value:
• not equal - error detected

• equal - no error detected. But maybe
errors nonetheless? More later ….

Goal: detect errors (i.e., flipped bits) in transmitted segment

Transport Layer: 3-40

Internet checksum: an example

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Transport Layer: 3-41

Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1

1 0

Even though
numbers have
changed (bit
flips), no change
in checksum!

Transport Layer: 3-42

Summary: UDP

▪ “no frills” protocol:

• segments may be lost, delivered out of order

• best effort service: “send and hope for the best”

▪ UDP has its plusses:

• no setup/handshaking needed (no RTT incurred)

• can function when network service is compromised

• helps with reliability (checksum)

▪ build additional functionality on top of UDP in application layer
(e.g., HTTP/3)

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-44

Principles of reliable data transfer

sending
process

data

receiving
process

data

reliable channel

application

transport

reliable service abstraction

Transport Layer: 3-45

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol

sending
process

data

receiving
process

data

reliable channel

application

transport

reliable service abstraction

Transport Layer: 3-46

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol
Complexity of reliable data

transfer protocol will depend
(strongly) on characteristics of

unreliable channel (lose,
corrupt, reorder data?)

Transport Layer: 3-47

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol
Sender, receiver do not know
the “state” of each other, e.g.,
was a message received?
▪ unless communicated via a

message

Transport Layer: 3-48

Reliable data transfer protocol (rdt): interfaces

sending
process

data

receiving
process

data

unreliable channel

sender-side
implementation of
rdt reliable data
transfer protocol

receiver-side
implementation of
rdt reliable data
transfer protocol

rdt_send()

udt_send() rdt_rcv()

deliver_data()

dataHeader dataHeader

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on receiver side of
channel

deliver_data(): called by rdt
to deliver data to upper layer

Bi-directional communication over
unreliable channel

data

packet

Transport Layer: 3-49

Reliable data transfer: getting started
We will:
▪ incrementally develop sender, receiver sides of reliable data transfer

protocol (rdt)

▪ consider only unidirectional data transfer
• but control info will flow in both directions!

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event
event

actions

▪ use finite state machines (FSM) to specify sender, receiver

Transport Layer: 3-50

Transport Layer: 3-51

rdt1.0: reliable transfer over a reliable channel

▪ underlying channel perfectly reliable
• no bit errors

• no loss of packets

packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

rdt_rcv(packet)Wait for

call from

below
receiver

▪ separate FSMs for sender, receiver:
• sender sends data into underlying channel

• receiver reads data from underlying channel

sender
Wait for

call from

above

Transport Layer: 3-52

rdt2.0: channel with bit errors

▪ underlying channel may flip bits in packet
• checksum (e.g., Internet checksum) to detect bit errors

▪ the question: how to recover from errors?

How do humans recover from “errors” during conversation?

Transport Layer: 3-53

rdt2.0: channel with bit errors
▪ underlying channel may flip bits in packet
• checksum to detect bit errors

▪ the question: how to recover from errors?
• acknowledgements (ACKs): receiver explicitly tells sender that pkt

received OK

• negative acknowledgements (NAKs): receiver explicitly tells sender
that pkt had errors

• sender retransmits pkt on receipt of NAK

stop and wait
sender sends one packet, then waits for receiver response

Transport Layer: 3-54

rdt2.0: FSM specifications

Wait for

call from

above
udt_send(sndpkt)

Wait for

ACK or

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for

call from

below

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

Transport Layer: 3-55

rdt2.0: FSM specification

Wait for

call from

above
udt_send(sndpkt)

Wait for

ACK or

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for

call from

below

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver

Note: “state” of receiver (did the receiver get my
message correctly?) isn’t known to sender unless
somehow communicated from receiver to sender
▪ that’s why we need a protocol!

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)isNAK(rcvpkt)

isACK(rcvpkt)

Transport Layer: 3-56

rdt2.0: operation with no errors

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

udt_send(NAK)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

sender

receiver

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

Transport Layer: 3-57

rdt2.0: corrupted packet scenario

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver

Transport Layer: 3-58

rdt2.0 has a fatal flaw!

what happens if ACK/NAK
corrupted?

▪ sender doesn’t know what
happened at receiver!

▪ can’t just retransmit: possible
duplicate

handling duplicates:
▪ sender retransmits current pkt

if ACK/NAK corrupted

▪ sender adds sequence number
to each pkt

▪ receiver discards (doesn’t
deliver up) duplicate pkt

stop and wait
sender sends one packet, then
waits for receiver response

Transport Layer: 3-59

rdt2.1: sender, handling garbled ACK/NAKs

Wait for

call 0 from

above

Wait for

ACK or

NAK 0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt)

&& (corrupt(rcvpkt) ||

isNAK(rcvpkt))

Wait for

 call 1 from

above

Wait for

ACK or

NAK 1

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)



rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt) &&

isACK(rcvpkt)



Transport Layer: 3-60

rdt2.1: receiver, handling garbled ACK/NAKs

Wait for

0 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

Wait for

1 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq0(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

rdt_rcv(rcvpkt) &&

 not corrupt(rcvpkt) &&

 has_seq0(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 not corrupt(rcvpkt) &&

 has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

Transport Layer: 3-61

rdt2.1: discussion

sender:

▪ seq # added to pkt

▪ two seq. #s (0,1) will suffice.

▪must check if received ACK/NAK
corrupted

▪ twice as many states
• state must “remember” whether

“expected” pkt should have seq #
of 0 or 1

receiver:

▪must check if received packet
is duplicate
• state indicates whether 0 or 1 is

expected pkt seq #

▪ note: receiver can not know if
its last ACK/NAK received OK
at sender

Transport Layer: 3-62

rdt2.2: a NAK-free protocol

▪ same functionality as rdt2.1, using ACKs only

▪ instead of NAK, receiver sends ACK for last pkt received OK
• receiver must explicitly include seq # of pkt being ACKed

▪ duplicate ACK at sender results in same action as NAK:
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free

Transport Layer: 3-63

rdt2.2: sender, receiver fragments

Wait for

call 0 from

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

 isACK(rcvpkt,1))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

Wait for

ACK

0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for

0 from

below

rdt_rcv(rcvpkt) &&

 (corrupt(rcvpkt) ||

 has_seq1(rcvpkt))

sndpkt =

make_pkt(ACK1,

chksum)

udt_send(sndpkt)

receiver FSM
fragment



Transport Layer: 3-64

rdt3.0: channels with errors and loss

New channel assumption: underlying channel can also lose
packets (data, ACKs)
• checksum, sequence #s, ACKs, retransmissions will be of help …

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?

Transport Layer: 3-65

rdt3.0: channels with errors and loss

Approach: sender waits “reasonable” amount of time for ACK

▪ retransmits if no ACK received in this time
▪ if pkt (or ACK) just delayed (not lost):

• retransmission will be duplicate, but seq #s already handles this!

• receiver must specify seq # of packet being ACKed

timeout

▪ use countdown timer to interrupt after “reasonable” amount
of time

Transport Layer: 3-66

rdt3.0 sender

Wait

for

ACK0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

Wait for

call 0 from

above

Wait

for

ACK1

Transport Layer: 3-67

rdt3.0 sender

Wait

for

ACK0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

udt_send(sndpkt)

start_timer

timeoutWait for

call 0 from

above

Wait

for

ACK1



rdt_rcv(rcvpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)



udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))



Transport Layer: 3-68

rdt3.0 in action

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

Transport Layer: 3-69

rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1

timeout
resend pkt1

ack1

ack1

send ack1send pkt0
rcv ack1

pkt0

rcv pkt0
send ack0ack0

pkt1

(ignore)
rcv ack1

Transport Layer: 3-70

Performance of rdt3.0 (stop-and-wait)

▪ example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

▪U sender: utilization – fraction of time sender busy sending

Dtrans =
L
R

8000 bits
109 bits/sec

= = 8 microsecs

• time to transmit packet into channel:

Transport Layer: 3-71

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

Transport Layer: 3-72

rdt3.0: stop-and-wait operation

sender receiver

Usender
=

L / R

RTT

RTT

L/R

+ L / R

= 0.00027

=
.008

30.008

▪ rdt 3.0 protocol performance stinks!
▪ Protocol limits performance of underlying infrastructure (channel)

Transport Layer: 3-73

rdt3.0: pipelined protocols operation
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged

packets
• range of sequence numbers must be increased

• buffering at sender and/or receiver

Transport Layer: 3-74

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases

 utilization by a factor of 3!

U
sender =

.0024

30.008
= 0.00081

3L / R

RTT + L / R
=

Transport Layer: 3-75

Go-Back-N: sender
▪ sender: “window” of up to N, consecutive transmitted but unACKed pkts

• k-bit seq # in pkt header

▪ cumulative ACK: ACK(n): ACKs all packets up to, including seq # n

• on receiving ACK(n): move window forward to begin at n+1

▪ timer for oldest in-flight packet

▪ timeout(n): retransmit packet n and all higher seq # packets in window
Transport Layer: 3-76

Go-Back-N: receiver

▪ ACK-only: always send ACK for correctly-received packet so far, with
highest in-order seq #
• may generate duplicate ACKs
• need only remember rcv_base

▪ on receipt of out-of-order packet:
• can discard (don’t buffer) or buffer: an implementation decision
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not ACKed

Not received

Receiver view of sequence number space:

… …

Transport Layer: 3-77

Go-Back-N in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
 (re)send ack1

send pkt2
send pkt3
send pkt4
send pkt5

Xloss

pkt 2 timeout

receive pkt4, discard,
 (re)send ack1
receive pkt5, discard,
 (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

Transport Layer: 3-78

Selective repeat: the approach

▪pipelining: multiple packets in flight

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

▪sender:

• maintains (conceptually) a timer for each unACKed pkt

• timeout: retransmits single unACKed packet associated with timeout

• maintains (conceptually) “window” over N consecutive seq #s

• limits pipelined, “in flight” packets to be within this window

Transport Layer: 3-79

Selective repeat: sender, receiver windows

Transport Layer: 3-80

Selective repeat: sender and receiver

data from above:

▪ if next available seq # in
window, send packet

timeout(n):

▪ resend packet n, restart timer

ACK(n) in [sendbase,sendbase+N-1]:

▪ mark packet n as received

▪ if n smallest unACKed packet,
advance window base to next
unACKed seq #

sender
packet n in [rcvbase, rcvbase+N-1]

▪ send ACK(n)

▪ out-of-order: buffer

▪ in-order: deliver (also deliver
buffered, in-order packets),
advance window to next not-yet-
received packet

packet n in [rcvbase-N,rcvbase-1]

▪ ACK(n)

otherwise:
▪ ignore

receiver

Transport Layer: 3-81

Selective Repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

send pkt2
(but not 3,4,5)

Xloss

pkt 2 timeout

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
 send ack3

record ack3 arrived

receive pkt4, buffer,
 send ack4
receive pkt5, buffer,
 send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Transport Layer: 3-82

Selective repeat:
a dilemma!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example:
▪ seq #s: 0, 1, 2, 3 (base 4 counting)

▪ window size=3

Transport Layer: 3-83

Selective repeat:
a dilemma!

Q: what relationship is needed
between sequence # size and
window size to avoid problem
in scenario (b)?

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example:
▪ seq #s: 0, 1, 2, 3 (base 4 counting)

▪ window size=3

▪ receiver can’t
see sender side

▪ receiver
behavior
identical in both
cases!

▪ something’s
(very) wrong!

Transport Layer: 3-84

Chapter 3: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
Transport Layer: 3-85

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

▪ cumulative ACKs

▪ pipelining:
• TCP congestion and flow control

set window size

▪ connection-oriented:
• handshaking (exchange of control

messages) initializes sender,
receiver state before data exchange

▪ flow controlled:
• sender will not overwhelm receiver

▪ point-to-point:
• one sender, one receiver

▪ reliable, in-order byte
stream:
• no “message boundaries"

▪ full duplex data:
• bi-directional data flow in

same connection
• MSS: maximum segment size

Transport Layer: 3-86

TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes

receiver willing to accept

sequence number

segment seq #: counting

bytes of data into bytestream
(not segments!)

application

data

(variable length)

data sent by
application into
TCP socket

A

acknowledgement number

ACK: seq # of next expected
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum

RST, SYN, FIN: connection
management

FSR

Urg data pointer

PUC E

C, E: congestion notification

Transport Layer: 3-87

TCP sequence numbers, ACKs

Sequence numbers:

• byte stream “number” of
first byte in segment’s data

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from receiver

A

sent
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
 N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Acknowledgements:

• seq # of next byte expected
from other side

• cumulative ACK

Q: how receiver handles out-of-
order segments

• A: TCP spec doesn’t say, - up
to implementor

Transport Layer: 3-88

TCP sequence numbers, ACKs

host ACKs receipt
of echoed ‘C’

host ACKs receipt
of‘C’, echoes back ‘C’

simple telnet scenario
Host BHost A

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer: 3-89

The key thing to note here is that the ACK number (43) on the B-to-A segment is one more than the sequence
number (42) on the A-to-B segment that triggered that ACK

Similarly, the ACK number (80) on the last A-to-B segment is one more than the sequence number (79) on the
B-to-A segment that triggered that ACK

TCP round trip time, timeout

Q: how to set TCP timeout
value?

▪ longer than RTT, but RTT varies!

▪ too short: premature timeout,
unnecessary retransmissions

▪ too long: slow reaction to
segment loss

Q: how to estimate RTT?
▪SampleRTT:measured time

from segment transmission until
ACK receipt
• ignore retransmissions

▪SampleRTT will vary, want
estimated RTT “smoother”

• average several recent
measurements, not just current
SampleRTT

Transport Layer: 3-90

TCP round trip time, timeout
EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

▪ exponential weighted moving average (EWMA)

▪ influence of past sample decreases exponentially fast

▪ typical value:  = 0.125
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)
Transport Layer: 3-91

TCP round trip time, timeout

▪ timeout interval: EstimatedRTT plus “safety margin”

• large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

▪DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

Transport Layer: 3-92

TCP Sender (simplified)

event: data received from
application

▪ create segment with seq #

▪ seq # is byte-stream number
of first data byte in segment

▪ start timer if not already
running
• think of timer as for oldest

unACKed segment

• expiration interval:
TimeOutInterval

event: timeout
▪ retransmit segment that

caused timeout
▪ restart timer

event: ACK received

▪ if ACK acknowledges
previously unACKed segments
• update what is known to be

ACKed

• start timer if there are still
unACKed segments

Transport Layer: 3-93

TCP Receiver: ACK generation [RFC 5681]

Event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK (cumulative acknowledgments)

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer: 3-94

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100

X

ACK=100

ti
m

e
o
u
t

premature timeout

Host BHost A

Seq=92, 8
bytes of data

ACK=120

ti
m

e
o
u
t

ACK=100

ACK=120

SendBase=100

SendBase=120

SendBase=120

Seq=92, 8 bytes of data

Seq=100, 20 bytes of data

SendBase=92

send cumulative
ACK for 120

Transport Layer: 3-95

TCP: retransmission scenarios

cumulative ACK covers
for earlier lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=120, 15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120

Transport Layer: 3-96

TCP fast retransmit
Host BHost A

ti
m

e
o
u
t

X

Seq=100, 20 bytes of data

Receipt of three duplicate ACKs
indicates 3 segments received
after a missing segment – lost

segment is likely. So retransmit!

if sender receives 3 additional
ACKs for same data (“triple
duplicate ACKs”), resend unACKed
segment with smallest seq #
▪ likely that unACKed segment lost,

so don’t wait for timeout

TCP fast retransmit

Transport Layer: 3-97

Chapter 3: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
Transport Layer: 3-98

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-99

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-100

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

from sender

Application removing
data from TCP socket

buffers

receive window flow control: # bytes
receiver willing to accept

Transport Layer: 3-101

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

flow control

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-102

TCP flow control

▪ TCP receiver “advertises” free buffer
space in rwnd field in TCP header

• RcvBuffer size set via socket
options (typical default is 4096 bytes)

• many operating systems auto-adjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering

Transport Layer: 3-103

TCP flow control

▪ TCP receiver “advertises” free buffer
space in rwnd field in TCP header

• RcvBuffer size set via socket
options (typical default is 4096 bytes)

• many operating systems auto-adjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format

Transport Layer: 3-104

TCP connection management
before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing to establish connection)
▪ agree on connection parameters (e.g., starting seq #s)

connection state: ESTAB
connection variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

Socket clientSocket =

 newSocket("hostname","port number");

Socket connectionSocket =

welcomeSocket.accept();

Transport Layer: 3-105

Agreeing to establish a connection

Q: will 2-way handshake always
work in network?

▪ variable delays

▪ retransmitted messages (e.g.
req_conn(x)) due to message loss

▪ message reordering

▪ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Transport Layer: 3-106

2-way handshake scenarios

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

ACK(x+1)

No problem!

Transport Layer: 3-107

2-way handshake scenarios

ESTAB

retransmit
req_conn(x)

req_conn(x)

client
terminates

server
forgets x

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

acc_conn(x)
Problem: half open
connection! (no client)

Transport Layer: 3-108

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

clientSocket = socket(AF_INET, SOCK_STREAM)

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

connectionSocket, addr = serverSocket.accept()

clientSocket.connect((serverName,serverPort))

Transport Layer: 3-110

A human 3-way handshake protocol

1. On belay?

2. Belay on.
3. Climbing.

Transport Layer: 3-111

Closing a TCP connection

▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

▪ simultaneous FIN exchanges can be handled

Transport Layer: 3-112

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-113

Congestion:

▪ informally: “too many sources sending too much data too fast for
network to handle”

▪manifestations:

• long delays (queueing in router buffers)

• packet loss (buffer overflow at routers)

▪ different from flow control!

Principles of congestion control

congestion control:
too many senders,

sending too fast

flow control: one sender

too fast for one receiver

▪ a top-10 problem!

Transport Layer: 3-114

End-end congestion control:

▪ no explicit feedback from
network

▪ congestion inferred from
observed loss, delay

Approaches towards congestion control

datadata
ACKs

ACKs

▪ approach taken by TCP

Transport Layer: 3-125

▪ TCP ECN, ATM, DECbit protocols

Approaches towards congestion control

datadata
ACKs

ACKs

explicit congestion info

Network-assisted congestion
control:

▪ routers provide direct feedback
to sending/receiving hosts with
flows passing through congested
router

▪ may indicate congestion level or
explicitly set sending rate

Transport Layer: 3-126

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-127

TCP congestion control: AIMD
▪ approach: senders can increase sending rate until packet loss

(congestion) occurs, then decrease sending rate on loss event

AIMD sawtooth

behavior: probing
for bandwidth

T
C

P
 s

e
n

d
e

r
 S

e
n

d
in

g
 r

a
te

time

increase sending rate by 1
maximum segment size every
RTT until loss detected

Additive Increase

cut sending rate in half at
each loss event

Multiplicative Decrease

Transport Layer: 3-128

TCP AIMD: more

Multiplicative decrease detail: sending rate is

▪ Cut in half on loss detected by triple duplicate ACK (TCP Reno)

▪ Cut to 1 MSS (maximum segment size) when loss detected by
timeout (TCP Tahoe)

Why AIMD?

▪ AIMD – a distributed, asynchronous algorithm – has been
shown to:

• optimize congested flow rates network wide!

• have desirable stability properties

Transport Layer: 3-129

TCP congestion control: details

▪ TCP sender limits transmission:

▪ cwnd is dynamically adjusted in response to observed
network congestion (implementing TCP congestion control)

LastByteSent- LastByteAcked < cwnd

last byte
ACKed

last byte sent

cwnd

sender sequence number space

available but
not used

TCP sending behavior:

▪ roughly: send cwnd bytes,
wait RTT for ACKS, then
send more bytes

TCP rate ~~
cwnd

RTT
bytes/secsent, but not-

yet ACKed
(“in-flight”)

Transport Layer: 3-130

TCP slow start

▪ when connection begins,
increase rate exponentially
until first loss event:
• initially cwnd = 1 MSS

• double cwnd every RTT

• done by incrementing cwnd
for every ACK received

Host A Host B

R
T

T

time

▪ summary: initial rate is
slow, but ramps up
exponentially fast

Transport Layer: 3-131

TCP: from slow start to congestion avoidance

Q: when should the exponential
increase switch to linear?

A: when cwnd gets to 1/2 of its
value before timeout.

Implementation:
▪ variable ssthresh

▪ on loss event, ssthresh is set to
1/2 of cwnd just before loss event

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer: 3-132

X

Summary: TCP congestion control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment



cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK

.

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0

retransmit missing segment
ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK



cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer: 3-133

Fairness: must all network apps be “fair”?
Fairness and UDP
▪multimedia apps often do not

use TCP
• do not want rate throttled by

congestion control

▪ instead use UDP:
• send audio/video at constant rate,

tolerate packet loss

▪ there is no “Internet police”
policing use of congestion
control

Fairness, parallel TCP
connections

▪ application can open multiple
parallel connections between two
hosts

▪web browsers do this , e.g., link of
rate R with 9 existing connections:
• new app asks for 1 TCP, gets rate R/10

• new app asks for 11 TCPs, gets R/2

Transport Layer: 3-143

Chapter 3: summary

Transport Layer: 3-150

▪ principles behind transport
layer services:
• multiplexing, demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ instantiation, implementation
in the Internet
• UDP

• TCP

Up next:

▪ leaving the network
“edge” (application,
transport layers)

▪ into the network “core”

▪ two network-layer
chapters:

• data plane

• control plane

	Slide 1
	Slide 2: Transport layer: overview
	Slide 3: Transport layer: roadmap
	Slide 4: Transport services and protocols
	Slide 5: Transport vs. network layer services and protocols
	Slide 6: Transport vs. network layer services and protocols
	Slide 7: Processes communicating
	Slide 8: Sockets
	Slide 9: Addressing processes
	Slide 10: Transport Layer Actions
	Slide 11: Transport Layer Actions
	Slide 12: Two principal Internet transport protocols
	Slide 13: Chapter 3: roadmap
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Multiplexing/demultiplexing
	Slide 25: How demultiplexing works
	Slide 26: Connectionless demultiplexing
	Slide 27: Connectionless demultiplexing: an example
	Slide 28: Connection-oriented demultiplexing
	Slide 29: Connection-oriented demultiplexing: example
	Slide 30: Summary
	Slide 31: Chapter 3: roadmap
	Slide 32: UDP: User Datagram Protocol
	Slide 33: UDP: User Datagram Protocol
	Slide 34: UDP: User Datagram Protocol [RFC 768]
	Slide 35: UDP: Transport Layer Actions
	Slide 36: UDP: Transport Layer Actions
	Slide 37: UDP: Transport Layer Actions
	Slide 38: UDP segment header
	Slide 39: UDP checksum
	Slide 40: Internet checksum
	Slide 41: Internet checksum: an example
	Slide 42: Internet checksum: weak protection!
	Slide 43: Summary: UDP
	Slide 44: Chapter 3: roadmap
	Slide 45: Principles of reliable data transfer
	Slide 46: Principles of reliable data transfer
	Slide 47: Principles of reliable data transfer
	Slide 48: Principles of reliable data transfer
	Slide 49: Reliable data transfer protocol (rdt): interfaces
	Slide 50: Reliable data transfer: getting started
	Slide 51
	Slide 52: rdt1.0: reliable transfer over a reliable channel
	Slide 53: rdt2.0: channel with bit errors
	Slide 54: rdt2.0: channel with bit errors
	Slide 55: rdt2.0: FSM specifications
	Slide 56: rdt2.0: FSM specification
	Slide 57: rdt2.0: operation with no errors
	Slide 58: rdt2.0: corrupted packet scenario
	Slide 59: rdt2.0 has a fatal flaw!
	Slide 60: rdt2.1: sender, handling garbled ACK/NAKs
	Slide 61: rdt2.1: receiver, handling garbled ACK/NAKs
	Slide 62: rdt2.1: discussion
	Slide 63: rdt2.2: a NAK-free protocol
	Slide 64: rdt2.2: sender, receiver fragments
	Slide 65: rdt3.0: channels with errors and loss
	Slide 66: rdt3.0: channels with errors and loss
	Slide 67: rdt3.0 sender
	Slide 68: rdt3.0 sender
	Slide 69: rdt3.0 in action
	Slide 70: rdt3.0 in action
	Slide 71: Performance of rdt3.0 (stop-and-wait)
	Slide 72: rdt3.0: stop-and-wait operation
	Slide 73: rdt3.0: stop-and-wait operation
	Slide 74: rdt3.0: pipelined protocols operation
	Slide 75: Pipelining: increased utilization
	Slide 76: Go-Back-N: sender
	Slide 77: Go-Back-N: receiver
	Slide 78: Go-Back-N in action
	Slide 79: Selective repeat: the approach
	Slide 80: Selective repeat: sender, receiver windows
	Slide 81: Selective repeat: sender and receiver
	Slide 82: Selective Repeat in action
	Slide 83: Selective repeat: a dilemma!
	Slide 84: Selective repeat: a dilemma!
	Slide 85: Chapter 3: roadmap
	Slide 86: TCP: overview RFCs: 793,1122, 2018, 5681, 7323
	Slide 87: TCP segment structure
	Slide 88: TCP sequence numbers, ACKs
	Slide 89: TCP sequence numbers, ACKs
	Slide 90: TCP round trip time, timeout
	Slide 91: TCP round trip time, timeout
	Slide 92: TCP round trip time, timeout
	Slide 93: TCP Sender (simplified)
	Slide 94: TCP Receiver: ACK generation [RFC 5681]
	Slide 95: TCP: retransmission scenarios
	Slide 96: TCP: retransmission scenarios
	Slide 97: TCP fast retransmit
	Slide 98: Chapter 3: roadmap
	Slide 99: TCP flow control
	Slide 100: TCP flow control
	Slide 101: TCP flow control
	Slide 102: TCP flow control
	Slide 103: TCP flow control
	Slide 104: TCP flow control
	Slide 105: TCP connection management
	Slide 106: Agreeing to establish a connection
	Slide 107: 2-way handshake scenarios
	Slide 108: 2-way handshake scenarios
	Slide 110: TCP 3-way handshake
	Slide 111: A human 3-way handshake protocol
	Slide 112: Closing a TCP connection
	Slide 113: Chapter 3: roadmap
	Slide 114: Principles of congestion control
	Slide 125: Approaches towards congestion control
	Slide 126: Approaches towards congestion control
	Slide 127: Chapter 3: roadmap
	Slide 128: TCP congestion control: AIMD
	Slide 129: TCP AIMD: more
	Slide 130: TCP congestion control: details
	Slide 131: TCP slow start
	Slide 132: TCP: from slow start to congestion avoidance
	Slide 133: Summary: TCP congestion control
	Slide 143: Fairness: must all network apps be “fair”?
	Slide 150: Chapter 3: summary

