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Abstract
Landslides threaten lives and property throughout the United States, causing in excess of
$2 billion in damages and 25–50 deaths annually. In regions subjected to urban expansion
caused by population growth and/or increased storm intensities caused by changing climate
patterns, the economic and society costs of landslides will continue to rise. Using a geo-
graphic information system (GIS), this paper develops and implements a multivariate statis-
tical approach for mapping landslide susceptibility. The presented susceptibility maps are
intended to help in the design of hazard mitigation and land development policies at regional
scales. The paper presents (a) a GIS-based multivariate statistical approach for mapping
landslide susceptibility, (b) several dimensionless landslide susceptibility indexes developed
to quantify and weight the influence of individual categories for given potential risk factors
on landslides and (c) a case study in southern California, which uses 11 111 seismic landslide
scars collected from previous efforts and 5389 landslide scars newly digitized from local
geologic maps. In the case study, seven potential risk factors were selected to map landslide
susceptibility. Ground slope and event precipitation were the most important factors, fol-
lowed by land cover, surface curvature, proximity to fault, elevation and proximity to coast-
line. The developed landslide susceptibility maps show that areas classified as having high
or very high susceptibilities contained 71% of the digitized landslide scars and 90% of the
seismic landslide scars while only occupying 26% of the total study area. These areas mostly
have ground slopes higher than 46% and 2-year, 6-hour precipitation greater than 51 mm.
Only 12% of digitized landslides and less than 1% of recorded seismic landslides were
located in areas classified as low or very low susceptibility, while occupying 42% of the total
study region. These areas mostly have slopes less than 27% and 2-year, 6-hour precipitation
less than 41 mm. Copyright © 2007 John Wiley & Sons, Ltd.
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Introduction

Landslides are among the most widespread geological hazards on earth and threaten lives and property globally. In the
United States, it is estimated that landslides cause more than $2 billion in damages and 25–50 deaths annually
(National Research Council, 2004). Despite advances in science and technology, these events continue to result in
human suffering, property loss and environmental degradation. As regional populations, urban expansion and storm
intensities increase due to changing development and climate patterns, the economic and society costs of landslides
will continue to rise, increasing the demand for improved protection against landslides. Landslide susceptibility
mapping is a valuable tool for assessing current and potential risks that can be used for developing early warning
systems, mitigation plans and land use restrictions.

In the last three decades, landslide susceptibility mapping has become a topic of major interest for both geoscientists
and engineering professionals as well as the community and local officials in many parts of the world. Various
techniques or tools have been adopted for determining landslide susceptibility. General overviews can be found in the
work of Leroi (1997), Aleotti and Chowdhury (1999), Guzzetti et al. (1999), Dai et al. (2002) and Van Westen
(2004). All of these approaches can be divided into two groups: qualitative and/or semi-quantitative methods and
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Figure 1. Proposed classification of landslide susceptibility assessment methods.

quantitative methods (Figure 1). The qualitative and/or semi-quantitative methods can include inventory mapping and
expert evaluations. The quantitative methods can include statistical and mechanistic methods.

Landslide inventory maps are commonly prepared by collecting historic information on landslide events from aerial
photograph and satellite images. The inventories are an elementary form of susceptibility mapping because they
emphasize the location and extent of recorded landslides. However, landslide inventory maps do not identify areas that
may be susceptible to landslides unless landslides have already occurred. The challenge in susceptibility mapping is
developing a powerful system from limited inventories (Dai et al., 2002).

Expert evaluation can include heuristic methods, geomorphologic analysis and index or parameter methods. In heuristic
methods, expert opinions are used to estimate landslide potential from data on potential risk factors (or variables),
based on the assumption that the relationships between landslide susceptibility and the risk factors are known and can
be specified by models (Gupta and Joshi, 1989; Dai et al., 2002). Geomorphologic analysis is probably the simplest
of the qualitative methods and was used frequently in the 1970s and 1980s (Fenti et al., 1979; Kienholz, 1978; Rupke
et al., 1988). The assessment is rapidly carried out in the field by qualified scientists based on their experience in
similar situations. In the index or parameter approach, the expert selects and maps the factors that affect slope stability
and assigns a weighted value to each factor that is proportionate to its expected relative contribution in generating
failure, based on personal experience (Anbalagan and Singh, 1996; Gupta and Anbalagan, 1997; Wachal and Hudak,
2000; Morton et al., 2003). Expert evaluation is the most widely used approach for landslide hazard evaluation and
can be used successfully at any scale. Its main disadvantages are subjectivity in the process of decision making, long-
term information required on landslides and lengthy field surveys (Carrara, 1983; Van Westen et al., 1997).

Statistical methods were developed to overcome the relatively high level of subjectivity related to expert evaluation
(Fall et al., 2006). They involve the statistical assessment of combinations of factors that have caused landslides in the
past. Quantitative or semi-quantitative estimates are then performed for areas not affected by landslides, but where the
same conditions exist (Dai et al., 2002). Statistical methods are generally considered the most appropriate method for
landslide susceptibility mapping at regional scales because they are objective, reproducible and easily updatable
(Naranjo et al., 1994). Several groups (Carrara, 1983; Bernknopf et al., 1988; Aleotti et al., 1998; Atkinson and
Massari, 1998; Guzzetti et al., 2005) have applied bivariate or multivariate statistical methods to evaluate the landslide
hazards successfully. Two drawbacks with the use of statistical methods are that (1) indicator factors are selected by
expert or personal opinion and (2) data are required over large spatial and temporal extents. It is often problematic to
carry out detailed data gathering at acceptable costs (Van Westen et al., 1997).

Building on traditional statistical methods, artificial neural networks (ANNs) provide statistically based, com-
putational tools for organizing and correlating information in ways that have proved useful for solving complex,
poorly understood and/or resource-intensive problems (Chang and Liu, 2004). Several efforts (Aleotti et al., 1998; Lee
et al., 2003) have applied ANN analysis to evaluate landslide susceptibility successfully. ANNs have advantages compared
to traditional statistical methods: (a) ANN methods are independent of the statistical distribution of the data; (b) there
is no need for a specific statistical factor (or variable) and (c) accurate analysis is possible with only a few training
datasets. ANN disadvantages are (a) that resultant values do not accurately coincide with the correct values because
initial weights are random, (b) that factors are selected empirically and (c) lengthy execution time (Lee et al., 2003).

Mechanistic approaches evaluate and analyze slope stability using deterministic or probabilistic models. These
models (one, two or three dimensional) are commonly used for small areas at fine scales and/or in soil engineering for
slope-specific stability studies (Ward et al., 1981; Wilson and Keefer, 1983; Nash, 1987; Terlien et al., 1995; Jibson
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et al., 1998; Jibson, 2001; Collins and Znidarcic, 2004). In this type of approach, soil properties are used to calculate
a factor of safety based on an infinite slope stability analysis, such as SINMAP (Pack et al., 1999), SHALSTAB
(Montgomery and Dietrich, 1994), LISA (Hammond et al., 1992) and the transient response model (Iverson, 2000).
The advantage of these methods is their physically based framework. Due to the high spatial variability of geotechnical
parameters and the laborious methods involved in acquiring these data, the approximation of model parameters is
practically limited to site investigations (Van Westen et al., 1997). In landslide susceptibility or hazard assessment
over large areas, mechanistic methods are commonly limited to only studying the stability of slopes (Fall et al., 2006).

The review of different methods for landslide susceptibility mapping discussed above has shown that all available
techniques present both advantages and disadvantages. The successful use of one method or another strongly depends
on many factors, such as the mapping scale, accuracy of expected results and data availability. For a regional scale
landslide susceptibility assessment, statistical methods may be the most applicable because they are relatively simple
to implement, provide quantitative results and are easily updated. However, traditional statistical methods still lack the
ability to quantify the influence of individual factors and their different categories. In recent years, geographical
information systems (GISs) have proven to be a versatile tool for the display, analysis, management and modeling of
spatial data. Through appropriate use of GISs, most approaches to landslide susceptibility mapping enable total
automation of assessment and the standardization of data management techniques, from acquisition through final
analysis (Soeters and Van Westen, 1996; Stevenson, 1977; Anbalagan and Singh, 1996).

This paper presents a GIS-based multivariate statistical approach for regional landslide susceptibility assessment.
The approach is applied to map landslide susceptibility in southern California using a newly digitized landslide
inventory (extent and location). The main objectives of this paper are to (1) generate dimensionless indexes to
quantify the susceptibility of landslides within selected indicator categories, (2) develop indexes to weight the influ-
ence of selected indicator parameters on the occurrence of landslides, (3) present a GIS-based mapping approach for
landslide susceptibility in southern California and (4) develop GIS data that describes the extent and location of
landslides in selected regions of southern California.

Study Region

The region includes 33 220 km2 or roughly 8% of the land area in California, and is comprised of three sub-regions
(not including the Channel Islands): South Coast, Transverse Ranges and Peninsular Ranges (Figure 2). The region is
bounded by the transition to the Mojave Desert to the east, the Pacific Ocean to the west, the Tehachapi Mountains to
the north and the US–Mexico border to the south. The region is located along or near the boundary between the largest
tectonic plate on the earth’s crust (the Pacific Plate) and the continental North American Plate. There are a variety of
active faults, and earthquakes and landslides are common. The mean elevation is 615 m (2020 ft) above sea level,
ranging from sea level to 3480 m (11 420 ft). Approximately half the region has ground slopes greater than 50% (27°),
and a third has slopes greater than 70% (35°). Because of the contrast between the ocean and continental air masses
and the great differences in elevation and slope, the region displays a large diversity in weather and climate. The mean
annual precipitation is 432 mm (17 in), ranging from 229 mm (9 in) to 1295 mm (51 in).

Based on 1990s land use/land cover data, the region is comprised of approximately 28% urban lands, 66% undevel-
oped areas and 6% agricultural lands. In recent decades, southern California has experienced extraordinarily rapid
population growth. Based on 1980 and 2000 census data, 18·7 million people (55% of California’s total population)
reside in this region. From 1980 to 2000, the population increased at a rate of 41%, of which, Riverside, San Diego,
Orange, Ventura, Santa Barbara and Los Angeles Counties grew by 133, 51, 47, 42, 34 and 27%, respectively. It is this
rapid urbanization, particularly in the low-lying coastal regions, that is causing increasing activities and loss by mass
movements in the region. Landslides or other mass wasting processes occur widely on steep slopes triggered by
intense rainfall, likely due to the powerful tectonic movements, earthquake activity, deforestation by urbanization and
weathering producing an abundance of loose regolith and soil. As a result, the region provides an ideal setting for
studying landslides (Selby, 2000).

Methodology

Landslide susceptibility is the probability that a region will be affected by landslides, given a set of environmental
conditions (Brabb, 1984). In this paper, susceptibility, S, was used to quantify the probabilities of individual categories
(or subclasses) for potential risk factors contributing to landslide occurrence in a given region. For example, factors such
as land cover, elevation, civil infrastructure, ground slope, aspect, tectonic and lithology are commonly recognized as
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Figure 2. Location map and landslide inventories in coastal southern California.

influencing the occurrence of landslides (Dai et al., 2002). Partitioning these factors into categories such as elevations
between 500 and 1500 meters above sea level or slopes between 8 and 15 degrees and relating the categories to the
probability of landslide occurrence provides a useful basis for assessing regional landslide susceptibility. In the study
region, the susceptibility of a given risk factor category was defined as
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where Si, j is the susceptibility of the jth category of the ith factor, Ni, j is the area of landslide scars in the spatial extent
associated by jth category of the ith factor, Ai,j is the land area associated with the jth category of the ith factor and NT

and AT are the total area of landslide scars and total land area of the study region, respectively. The index of
susceptibility (S) was used to indicate the weight of an individual category for any risk factor through the comparison
of landslide density (Ni,j/Ai,j) in the spatial extent associated by the category with the mean landslide density in the
research region. Using Equation (1), spatially distributed datasets (i.e. potential risk factors separated into unique
categories) were transformed into susceptibility maps. Given that these maps were raster format (i.e. grid), each pixel
was assigned a susceptibility value Si based on its underlying factor category.

From Equation (1) and the resulting susceptibility map, localized susceptibility varies with factor category (see
Table II below). Some categories were highly correlated to landslides, and the areas associated with these categories had
high positive susceptibility. Some categories were not correlated to landslides, as indicated by negative susceptibility
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values. For example, areas with steep slopes have much higher susceptibility values than areas with mild or flat slopes.
For a risk factor to be useful for susceptibility mapping, its categories should provide a range of susceptibility values.
The standard deviation (σi) of the susceptibility for a given categorized risk factor was used as an index to quantify its
influence on landsliding:
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where σi is the standard deviation of the susceptibility of the ith factor, n is the number of grid cells in the susceptibil-
ity map associated with the ith factor, Xi is the mean susceptibility of the factor and xi,j is the susceptibility of the jth
grid cell for the ith factor (see Table III below).

Based the dimensionless characteristics of susceptibility, Si, for any given grid cell, it was possible to determine the
cumulative susceptibility, S, for multiple (n) risk factors (or variables) at a given location:
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The range of S values for a given region was divided into equally sized bins to define susceptibility levels, and each
grid cell was assigned a susceptibility level according to its S value (Figures 3 and 4; see Table V below). Using this
method, a susceptibility map that integrates multiple risk factors was generated for the region using five categories:
very low, low, moderate, high and very high (Figure 4).

A second index, integrated susceptibility (SI), was also used to assess the importance of given risk factors:
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where NS is the area of landslide scars in the region associated with a susceptibility level greater than moderate (i.e.
high and very high/severe) and AS is the land area occupied by these susceptibility levels. A factor with a high SI value
implies it can be categorized into bins that accurately predict the occurrence and/or non-occurrence of landslides and
is more important than factors with lower SI value (see Table III below).

The index of relative landslide density (R) as defined by Baeza and Corominas (2001) was used to validate the
susceptibility mapping results.
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where Rk is the relative landslide-density of the kth susceptibility level, nk is the area of landslide scars in the kth
susceptibility level, Ak is the land area occupied by the kth susceptibility level, m is the total number of susceptibility
levels and k refers to any digit from 1 to m. As listed in Tables IV and V below, the landslide density index increases
with susceptibility level, suggesting that the distribution of observed landslides is consistent with the assigned suscep-
tibility levels (i.e., areas with higher susceptibility levels have a greater density of landslides).

Data Analysis

Landslide inventory
Two landslide inventory datasets were used: (1) geologic maps that include landslide outlines generated during 1999–
2006 and (2) seismic landslides triggered by the 1994 Northridge, CA, earthquake (Harp and Jibson, 1995). The GIS-
based landslide inventory maps used in this research were created by digitizing landslide boundaries on the 7·5 minute
geologic maps at 1:24 000 scale and 30 × 60 minute geologic maps at 1:100 000 scale. The seismic triggered landslide
maps at 1:24 000 scale were obtained in a GIS format. Figure 2 and Table I provide a summary of the landslide
inventory data.

A total of 5389 landslides were identified and digitized from the geologic maps (Figure 2). Approximately 95% of
these landslides were digitized from the 1:24 000 geologic maps. The accuracy of the base map (i.e. the 1:24 000
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Figure 3. (a) Landslide inventory Zones 1–3 and (b) landslide susceptibility map using data only from Zones 1 and 3.
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Figure 4. Landslide susceptibility map for southern California based on seven factors (in order of importance): ground slope,
event precipitation, land cover, surface curvature, proximity to fault lines, ground elevation and proximity to the coastline.

Table I. Data sources

Category Data source

Landslide inventory (1) 11 111 seismic landslides triggered by 1994 Northridge, California at 1:24 000 scale (Harp and Jibson, 1995);
(2) 30 × 60 minute geologic maps of Oceanside (2005), San Diego (2005) and Long Beach (2003) at 1:100 000 scale;
(3) 7·5 minute geologic maps of Aguanga (2003), Morro Hill (2001), San Vicente Reservoir (2002), Bonsall (2000),
Ojai (2005), Santa Paula (2004), Camarillo (2004), Otay Mesa (2002), Santa Paula Peak (2005), Dana Point (1999),
Oxnard (2003), Saticoy (2004), El Cajon (2002), Pala (2000), Temecula (2000), Escondido (1999), Pechanga (2000),
Vail Lake (2003), Fallbrook (2000), Pitas Point (2003), Valley Center (1999), Jamul Mountains (2002), Point Mugu (2003),
Ventura (2003), Las Pulgas Canyon (2001), San Clemente (1999), White Ledge Peak (2004), Margarita Peak (2001)
and San Onofre Bluff (1999) at 1:24 000 scale

DEM US Geological Survey 7·5 minute (30 m) digital elevation models (http://seamless.usgs.gov)

Roads (1) 2002 TIGER line files, railroads and roads, US Census Bureau, Geography Division (http://www.census.gov/geo/www/
tiger/index.html); (2) major roads in California, California Spatial Library (http://gis.ca.gov/data.epl)

Fault lines Geology of the conterminous United States at 1:2 500 000 Scale – a digital representation of the 1974 P. B. King and
H. M. Beikman map (http://pubs.usgs.gov/dds/dds11/)

Land cover 1990s land cover data for California, California Gap Analysis Project
(http://www.biogeog.ucsb.edu/projects/gap/gap_data_state.html)

2-yr, 6-hr precipitation National Oceanic and Atmospheric Administration (NOAA), National Weather Service,
Atlas No. 2 (http://www.nws.noaa.gov/ohd/hdsc/noaaatlas2.htm) and
Atlas No. 14 (http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_gis.html)

http://www.census.gov/geo/www/tiger/index.html
http://gis.ca.gov/data.epl
http://pubs.usgs.gov/dds/dds11/
http://www.biogeog.ucsb.edu/projects/gap/gap_data_state.html
http://www.nws.noaa.gov/ohd/hdsc/noaaatlas2.htm
http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_gis.html
http://seamless.usgs.gov
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geologic map) was assumed to be within National Map Accuracy Standards, with a horizontal accuracy of 14 m at the
95% confidence level. When the base maps were digitized, the calculated root-mean-square (RMS) error averaged
4·9 m, ranging from 1·2 to 8·7 m. Thus, the accuracy of the 1:24 000 geologic map used to digitize the landslides is
approximately ±20 m and no greater than 30 m. Only 5% of the recorded landslides were digitized from the 1:100 000
scale geologic maps. The accuracy of the 1:100 000 base map is approximately 50 m plus the transformed RMS error
during the processing of digitization of about 20 m. More than 11 000 seismic landslides (Harp and Jibson, 1995) are
shown in the digital inventory map (Figure 2). The location of seismic landslides is accurate within about 15 m, with
a maximum error of 30 m. For the 16 500 landslides identified in this research, over 98% were accurate within
approximately ±20 m, with 2% accurate within ±70 m (Figure 2).

Potential landslide risk factors
Numerous landslide risk factors (or parameters, variables) have been used for defining spatial hazard maps (Catani
et al., 2005). According to Wu and Sidle (1995), these factors can be grouped into two types: (1) the intrinsic factors
that contribute to landslide, such as topography, geology and hydrology, and (2) the extrinsic variables that tend
to trigger landslides, such as intense rainfall, earthquakes and landscape modifications (e.g. urbanization, road con-
struction, mining etc.). On the basis of the prevailing characteristics of landslides in southern California (Morton
et al., 2003) and the results of a preliminary monovariate statistical analysis of the parameters within mapped land-
slides, ten potential risk factors were selected: precipitation, elevation, coastline proximity, aspect, slope, curvature,
fault proximity, major road proximity, drainage proximity and land cover (Table I). Ground elevation, surface slope,
aspect, surface curvature and the drainage network were derived from a 30 m DEM (Table II). The proximity to the
coastline, fault lines, major roads and drainage lines were calculated through spatial statistics functions in ESRI’s
ArcGIS. The rationale for the selected factors is described below. In general, the selected factors focus on rainfall,
ground slope and landscape disturbances.

Precipitation is a fundamental slope instability factor. In the study region, Morton et al. (2003) found that rainfall
can saturate the colluvium to the point of failure above the colluvium–bedrock interface, resulting in a landslide.
During winter storms, precipitation is supplied by a flow of atmospheric moisture from the southwest (i.e. offshore to
onshore), and steep mountainous terrain near the coastline contributes to significant orographic precipitation (NOAA,
2001). On the windward side of the mountains (south- and west-facing slopes), nearest the coastline, rainfall increases
as elevation increases (Beighley et al., 2003). On the leeward side of the mountains (north- and east-facing slopes),
rainfall decreases as the distance to the ocean increases. Generally, areas receiving higher rainfall relative to the region
have a higher probability of landslide occurrence. Four factors were selected to capture the magnitude and combined
spatial and temporal rainfall characteristics: 2-year 6-hour rainfall depth (NOAA Altas Nos 2 and 14), ground eleva-
tion, distance to the coastline and aspect.

Ground surface slope is another important driver in landslide analysis (Catani et al., 2005). As slope increases, the
probability of landslide occurrence generally increases. This is likely due to the increase of shear stress in the soil or
other unconsolidated material as ground slope increases (Lee and Choi, 2004). The effect of surface curvature, which
represents the current morphology of the landscape, was also investigated. A positive curvature indicates that the
surface is upwardly convex, where a negative curvature indicates that the surface is upwardly concave. A value of
zero means the surface is flat. The convex and concave slopes contain more water after a storm and retain this water
for a longer period relative to zero curvature slopes, resulting in a higher probability of landslide occurrence (Lee and
Talib, 2005).

The proximity of local lineament features (i.e. faults, roads and streams) was used to investigate any cause–effect
relationships between lineament and landslide occurrence. The proximity to faults was selected to investigate
the effects of varying geologic conditions and potential seismic activity on landsides. The proximity to roads
was selected to investigate the effects of altering the natural terrain and drainage system by the mass grading.
The proximity to drainage lines or streams was selected to investigate the effects of regional geomorphology and
localized processes, such as stream channel erosion (headward and back erosion), on the occurrence of landslides. For
all proximity measures, we anticipated the probability of landslide occurrence to be highest near the lineament
features.

Land use/land cover also influences slope behavior (Varnes and IAEG, 1984). In southern California, Lee and Choi
(2004) found the probability of landslide occurrence to be highest for grass lands and certain forest types, but
concluded that their findings may be a result of co-existing landscape characteristics. For example, they show a
high probability of landslide occurrence for vegetation types found in steep, mountainous areas. In this effort, land
cover was used to investigate potential effects of urbanization (altered drainage networks, landscape alterations,
civil infrastructure).
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Table II. Categories, area ratios and susceptibilities for potential landslide risk factors

Potential risk factors Category Area ratio (%) Susceptibility

Elevation (m) <152 19 −0·83
152–457 31 0·41
457–914 25 0·33

914–1219 11 0·71
>1219 14 1·53

Slope (degrees) <8 26 −3·23
8–15 12 −1·08
15–25 15 −0·20
25–35 14 0·50
>35 33 1·12

Proximity to fault line (km) <3 37 0·60
3–6 24 0·35
6–10 18 −0·23

10–15 12 −0·99
>15 8 −1·78

6-hr precipitation (mm) <33 11 −1·11
(recurrence interval: 2 yrs) 33–41 35 −0·91

41–51 24 0·33
51–64 20 1·76

>64 10 1·47
Proximity to coastline (km) <5 8 0·44

5–10 7 0·07
10–20 14 −0·34
20–30 14 0·20
>30 57 −1·12

Profile curvature‡ <−1·5 9 0·89
−1·5 to −0·1 30 0·15

−0·1–0·1 26 −1·70
0·1–1·5 25 0·22

>1·5 10 0·90
Land cover developed 28 −1·29

planted/cultivated 6 −1·52
grass 7 0·96
shrub 48 0·66

hardwood 3 1·20
conifer 7 −0·33
water 0·4 −3·89
barren 0·3 −2·11

Aspect (degree) flat 1 N/A*
315–45 19 0·33
45–135 18 0·12

135–225 32 −0·09
225–315 30 −0·2

Proximity to major road (km) <1 23 −1·05
1–2 17 −0·17
2–3 13 0·39
3–4 10 0·52
>4 38 0·30

Proximity to drainage line (km) <0·5 35 −0·47
0·5–1·0 27 −0·05
1·0–1·5 19 0·20
1·5–2·0 12 0·45

>2·0 7 0·65

‡ Concave slope, curvature < 0; convex slope, curvature > 0; straight slope, curvature = 0.
* No landslide sites.
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Table III. Standard deviation (σ) and integrated suscepti-
bility (SI) for potential landslide risk factors

Risk factors σσσσσ SI

Slope 1·73 0·92
2-yr 6-hr storm 1·12 1·02
Land Cover 1·02 0·74
Curvature 0·95 0·35
Proximity to fault 0·74 0·49
Elevation 0·69 0·47
Proximity to coastline 0·61 0·26
Proximity to major road 0·58 0·24
Aspect 0·39 0·09
Proximity to drainage line 0·37 0·20

Table IV. Mapping results using the data from Zones 1 and 3 to predict landslides in Zone 2

Susceptibility level Cells Ratio (%) Cells in Zone 2 Landslide cells in Zone 2 ni/Ni Ri index

1 827 443 26 96 901 23 0·0002 0·2
2 603 352 19 11 785 129 0·0109 7·3
3 762 326 24 4 522 165 0·0365 24·2
4 820 421 26 963 99 0·1028 68·3
5 137 871 5 0 0 N/A N/A
Total 3 151 413 100 114 171 416 N/A N/A

Risk factor categories
To categorize and quantify the landslide susceptibility of continuous potential risk factors, they were reclassified
into five categories (or subclasses) using the following rules: (1) the area ratio of any category must be less than 50%;
(2) the area ratio of any category must be greater than 5% and (3) the area ratio of any two categories must be less
than 75%. Discrete risk factors (e.g. land cover) were categorized by their natural properties. Using these rules and
Equation (1), susceptibility values for all potential risk factor categories were determined (Table II).

Risk factor selection
Standard deviation (Equation (2)) and integrated susceptibility (Equation (4)) were used to weight the influence of
each potential risk factor on the occurrence of landslides. Based on the standard deviation and integrated susceptibility
for the ten factors listed in Table III, surface slope and event precipitation (2-year 6-hour precipitation) were the two
most important factors for predicting landslide locations in southern California. The next most important factors are
land cover, surface curvature, proximity to faults, elevation, proximity to the coastline, proximity to roads, aspect and
proximity to drainage lines. In this research, the seven most important factors were selected to map landslide suscep-
tibility: ground slope, event precipitation, land cover, surface curvature, proximity to faults, elevation and proximity to
coastline. The remaining three factors were not used due to lack of influence (Tables II and III). The decision for
selecting factors for use in the final susceptibility mapping was subjective. For inclusion, a risk factor had to have a
standard deviation greater than 50% and integrated susceptibility greater than 25%.

Susceptibility analysis and validation
Using GIS overlay analysis and Equations (1) and (3), an integrated landslide susceptibility map based on multiple
factors was developed. To validate the susceptibility mapping results, the data area was divided into three zones
(Figure 3(a)). Using only the data from Zones 1 and 3, susceptibility was determined for Zone 2 (Figure 3(b)). Based
on the Zone 2 modeling results, the relative landslide density, R, index was substantially larger in areas attributed to
high susceptibility levels relative to areas associated with lower susceptibility levels (Table IV). The density of
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Table V. Mapping results using the data from all three zones

No. of Area No. of No. of Ri

Hazard level Susceptibility cells ratio landslide cells† landslide cells‡ index

Very low <−0·60 839 677 26·6 0 701 0·4
Low −0·60 to −0·20 477 112 15·2 19 3 035 3·7
Medium −0·20–0·20 710 243 22·5 205 4 930 6·7
High 0·20–0·60 791 138 25·1 1898 12 036 34·5
Very high >0·60 333 243 10·6 237 9 361 54·6

† Earthquake triggered landslide.
‡ Digitized landslide.

observed landslides was positively correlated to high susceptibility levels. Thus, our mapping approach and defined
susceptibility levels based on Zones 1 and 3 provide a reasonable comparison to the observed landslide locations in
Zone 2. A regional assessment is provided in the Discussion section.

Results

Using Equations (1) and (3) and the landslide data from all three zones, landslide susceptibilities for all seven risk
factors were generated for southern California. The values of susceptibility were divided into five equally sized
segments (Table V) to define susceptibility levels: very low, low, moderate, high and very high. Each grid cell was
then assigned to a susceptibility level according to its susceptibility value (Figure 4). From the susceptibility map,
the land areas with high and very high landslide susceptibility occupy 26% of the total study area, while accounting
for approximately 71% of the digitized landslide scars and 90% of the seismic landslide scars. These areas mostly have
surface slopes greater than 46% (25°) and 2-year, 6-hour precipitation greater than 51 mm (2·0 in). The land areas
associated with low and very low landslide susceptibility occupy 42% of total research area, while accounting for only
12% of digitized landslides and less than 1% of recorded seismic landslides. These areas mostly have slopes less than
27% (15°) and 2-year, 6-hour precipitations less than 41 mm (1·6 in).

Discussion

The susceptibility map shown in Figure 4 is based on seven spatially distributed datasets. While it is likely that
additional data can be associated with the occurrence or non-occurrence of landslides, this research focuses on
datasets that are commonly available throughout the United States. For example specific soil properties and areas
that have been severely burned by forest fires are likely to be potential risk factors for landslides. For soil data, a
key problem in mapping landslide susceptibility is categorizing unique soil properties. This process requires high-
resolution data with properties that correlate to known landslide locations. At the national level, the State Soil
Geographic (STATSGO) Database does not provide the required resolution. The Soil Survey Geographic (SSURGO)
Database, which provides a much higher resolution, was not available for the entire study region. Guimarães et al.
(2003) suggests that the acquisition of high-quality digital elevation models is more important than the generation
of spatially distributed soil properties for basin or regional scale assessment of shallow landslide hazards. Thus, soil
data was not used for mapping landslide susceptibility. When available, future efforts will investigate the potential use
of the SSURGO database.

Wildfires are common to southern California, and likely result in the destabilization of pre-existing deep-seated
landslides over long time periods (Cannon et al., 1998). The expansion of urban development into forested areas has
created a situation where wildfires can adversely affect lives and property directly or by the flooding and landslides
that occur in the aftermath of fires. Post-fire landslide hazards include fast-moving, highly destructive debris flows that
can occur in the years immediately after wildfires in response to high-intensity rainfall events. Additional landslides
can result over longer time periods due to root decay and loss of soil strength (Cannon et al., 2004). Thus, the
locations of past wildfires are likely a potential risk factor for predicting landslides. However, to properly utilize the
influence of wildfire on landslide susceptibility mapping requires both the date of wildfire occurrence and any resulting
landslides. In this research, most recorded landslides occurred before 2000, while most spatially distributed wildfire data
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are for periods after 2000. Thus, wildfires were not used to generate the presented landslide susceptibility map. Future
efforts will investigate the applicability of soil and wildfire data in regional scale landslide susceptibility mapping.

Assessing the presented susceptibility mapping approach is challenging. The relative landslide density, R, index and
known landslide locations from three different zones were previously used to show the generally positive performance
of the mapping methods. As a second assessment, the mapping results (Figure 4) were also compared with a recent
USGS susceptibility mapping project (Morton et al., 2003). Morton et al. (2003) utilized three risk parameters,
geology, slope and aspect, to map four landslide susceptibility levels: none, low, moderate and high. For the compari-
son, the five susceptibility levels shown in Figure 4 were matched to the four USGS levels using on following: very
low to none; low to low; medium to moderate; high plus very high to high. Based on the extent of the USGS mapping
region, our predicted susceptibility levels agreed with the USGS levels for 44% of the area, while cells differing by
only one level accounting for an additional 30% of the area. Thus, 74% of the comparison region was within one
susceptibility level. Overall, our approach tended to produce more areas with high and very high susceptibilities,
which is likely due to the inclusion of additional risk factors such as event precipitation and differences in landslide
inventories.

Conclusions

In this paper, landslide susceptibility modeling indexes were developed to quantify and weight the influence of
potential risk factors for predicting the locations of landslides. Using GIS, a multivariate statistical approach for
landslide susceptibility mapping was developed. Modeling results for southern California suggest that ground slope
and event precipitation are the most important landslide risk factors, followed by land cover, surface curvature,
proximity to faults, elevation and proximity to the coastline.

As part of this research, a new GIS-based landslide inventory was produced for southern California containing 5389
landslide scars digitized from the existing geologic maps. An additional 11 111 seismic landslide scars collected from
previous research were also used. The developed landslide susceptibility maps show that areas classified as having
high or very high susceptibilities contain 71% of the digitized landslide scars and 90% of the seismic landslide scars
while only occupying 26% of the total study area. These areas can be generalized as having steep slopes (>46%) and
intense rainfall (2-year, 6-hour precipitation >51 mm). Only 12% of digitized landslides and less than 1% of recorded
seismic landslides were located in the areas classified as having low or very low susceptibility, while occupying 42%
of the total study region. These areas generally have ground slopes less than 27% and 2-year, 6-hour precipitation less
than 41 mm (1·6 in). Relative to previous susceptibility mapping results, the presented approach provides comparable
results, with an increase in regions having high and very high susceptibilities. These differences may be attributed to
the use of additional risk parameters, specifically event precipitation, and different landslide inventories.
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