ALayxeipLon Edge kat
Cloud dLKTUWV
Baclopevwy oTo
AoyLopLko (CSIS109)

Ap. EtpAvn Awwtou

eliotou@hua.gr

25/2/2025

mailto:eliotou@hua.gr

Course resources

James F. Kurose | Keith W. Ross

Software Networks
Virtualization, SDN, 5G and Security

NEIWORKING

A“'F@P DOWWAPPROACH * Guy Pujolle

@ Eighth Editio —

=
=
=
=

WILEY

Analogy: mainframe to PC evolution

'*‘fv‘l” A
PP

Specialized = J —_—
Applications —— Open Interface

i (— |
Specialized : n
Operating | or BULES Of

System —

. | — Open Interface —

Specialized g

Hardwar =1 ..

ardware ,*. ¢ _Microprocessor

Vertically integrated Horizontal

Closed, proprietary Open interfaces
Slow innovation Rapid innovation

Small industry Huge industry

* Slide courtesy: N. McKeown

The different types of clouds

(Classical model\ 4 IAAS N 4 PAAS) @ SAAS A
Application Application Application Application
Database Database Database Database

V Operating Syst. Operating Syst. Operating Syst. Operating Syst.
Virtualization Virtualization Virtualization Virtualization
| Hardware server Hardware server Hardware server Hardware server
Storage Storage Storage Storage
Network Network Network Network
\ = P W V \Q 5/

Operated by the company

Operated by the Cloud provider

Network Layer: 4-4

Layered Internet protocol stack

" application: supporting network applications
* HTTP, IMAP, SMTP, DNS

" transport: process-process data transfer
* TCP, UDP

= network: routing of datagrams from source to
destination

* |IP, routing protocols

" [ink: data transfer between neighboring
network elements
* Ethernet, 802.11 (WiFi), PPP

" physical: bits “on the wire”

application
transport

network

link

physical

Introduction: 1-5

Encapsulation

Matryoshka dolls (stacking dolls)

-t Xy A Y
— ‘ \ \
- = ’ \ .
777 . M
/f{?j 11T) S ol
— / N \ KT
'v,n i /-’"\t\ — \ ’,/'J(-‘ \ 5 3
—— S — g \ ;s
[== /
= /
1 QA P —
| {8 ey B A
’ / R
|‘\ = J Y I‘P— (a4 y
\w S/ \ ! (1077
-0l / (L
f o \ \‘ / Y (AN \"-|
"-‘-:, \ l‘\ J/ r ‘;,) ll e ol
/ = = _____» \ \ . —\J (> “ \
e & ol \
“ — N e 1
| __‘,*\ ":«_‘_ | |,.v">,_.: \ N | M | 1
[\ A e L L -
{ \
1177 x.n! 1'\ 7 L /408 J"”' A3 A
| \.!{"‘[' Al \g N\ ,(| | '\& I
N St . b h&
\ ~NC 21 'S q\ / \ " 1'
\ (Mt N) \
| \ \ 4 * ‘)
QS0 RS ‘*‘r |
e ' 2 / \ X

message

segment datagram frame

Credit: https://dribbble.com/shots/7182188-Babushka-Boi

Introduction: 1-6

https://dribbble.com/shots/7182188-Babushka-Boi

Services, Layering and Encapsulation

.. | P .
application . message M M appllcatlon
transport 6 segment H| M H] M étransport
network Bdatagram Ho[He| M HolH | M network

&
||nk frame |H||Hy|H| M H| Hq|H| M ||nk

D physical \\ e physical :

|
l
source destination

)

Introduction: 1-7

soyrce Encapsulation: an
message | M appligation .
segment |H,| M trangport \ end-end VleW
datagram | H.| H,[M netyork p =
frame [H/|H| H,| M link -
physical
link
physical I [~
L A
switch
destination H| H| M network
M _Jpplication Hy [Hn Hy| M link Hyl Hi| M
H|] ™ | | fransport physical Q(
Ho Hi| M network
TR TTRTAREY router

link

Introduction: 1-8

Network-layer services and protocols

" transport segment from sending
to receiving host

e sender: encapsulates segments into
datagrams, passes to link layer

* receiver: delivers segments to
transport layer protocol

= network layer protocols in every
Internet device: hosts, routers

" routers:

e examines header fields in all IP
datagrams passing through it

* moves datagrams from input ports to
output ports to transfer datagrams
along end-end path

mobile network

national or global ISP

application
transport
network

-« >

link
physical

datacenter
physical network

= «r v n application
™ | transport 4
enterprise o I o link__ | ¥
J S
network & physical

Network Layer: 4-9

Two key network-layer functions

network-layer functions: analogy: taking a trip
» forwarding: move packets from ® forwarding: process of getting
a router’s input link to through single interchange
appropriate router output link = routing: process of planning trip
" routing: determine route taken from source to destination
by packets from source to

destination
* routing algorithms

routing

Network Layer: 4-10

Network layer: data plane, control plane

Data plane: Control plane
= Jocal, per-router function = network-wide logic
= determines how datagram = determines how datagram is
arriving on router input port routed among routers along end-
is forwarded to router end path from source host to
output port destination host
values in arriving = two control-plane approaches:
packet header .y . .
* traditional routing algorithms:
11— implemented in routers
= o e software-defined networking (SDN):

implemented in (remote) servers

Network Layer: 4-11

Routing protocols

Routing protocol goal: determine
“good” paths (equivalently, routes),
from sending hosts to receiving host,
through network of routers

= path: sequence of routers packets
traverse from given initial source host
to final destination host

= “cood”: least “cost”, “fastest”, “least
congested”

" routing: a “top-10"” networking
challenge!

application

transport

link

physical

mobile network

national or global ISP

enterprise
network

datacenter

physical network

application

transport
network
link

physical

Network Layer: 5-12

Per-router control plane

Individual routing algorithm components in each and every

router interact in the control plane

=
-

values in arriving

packet heade;

control
plane
data
plane

Network Layer: 4-13

Software-Defined Networking (SDN) control plane

Remote controller computes, installs forwarding tables in routers

plane

values in arriving
packet header

Network Layer: 4-14

Per-router
control plane

SDN control plane

— Remote Controller -
Eﬁ Eu i |

i

- = L
|
1
I Q

Bl
(
i
t

Problems in Traditional Network Devices

* They are vendor specific

* Hardware & Software is bundled together

+ Very costly

* New features can only be added at the will of the vendor. Client can only request the features, vendor will
decide whether to add those features or not & the time frame in which these features will become

available is at the sole discretion of the vendor.

* Devices are function specific. You can not make your router behave like load balancer or make your switch
behave like a firewall or vice versa.

* If your network consists of hundred of these devices, each device has to be configured individually. There
is no centralized management.

* Innovations are very rare. Last 3 decades have not seen many innovations in networking. Whereas

Compute and storage industry has seen drastic changes such as compute virtualization & storage
virtualization. Networking has not been able to keep pace with other ingredients of Cloud Computing.

Software Defined Networking (SDN) Made Simple by Vipin Gupta, Linux & Cloud Engineer, Udemy

https://www.udemy.com/course-dashboard-redirect/?course_id=1799014

Separation of Data Plane & Control Plane

OpenFlow Controller

Control Plane

OpenFlow
protocol

Control Plane

=

Traditional Switch OpenFlow Switch

Forwarding Plane

Forwarding Plane

SDN has decoupled both the hardware & software parts. You can buy the hardware from one
vendor or even use merchant silicon devices. Software part can be obtained from other vendors or
can use Open Source control planes which are free available.

Software Defined Networking (SDN) Made Simple by Vipin Gupta, Linux & Cloud Engineer, Udemy

https://www.udemy.com/course-dashboard-redirect/?course_id=1799014

Software defined networking (SDN)

Why a logically centralized control plane?

easier network management: avoid router
misconfigurations, greater flexibility of traffic flows

table-based forwarding allows “programming”
routers

e distributed “programming” more difficult: compute
tables as result of distributed algorithm (protocol)
implemented in each and every router

e centralized “programming” easier: compute tables
centrally and distribute them

open (non-proprietary) implementation of control
plane

Traffic engineering: difficult traditional routing

Q: what if network operator wants u-to-z traffic to flow along
uvwz, x-to-z traffic to flow xwyz?

A: need to define link weights so traffic routing algorithm
computes routes accordingly (or need a new routing algorithm)!

Traffic engineering: difficult

Q: what if network operator wants to split u-to-z traffic
along uvwz and uxyz (load balancing)?
A: can’t do it (or need a new routing algorithm)

Traffic engineering: difficult

Q: what if w wants to route blue and red traffic differently?

A: can’t do it (with destination-based forwarding, and Link
State, Distance Vector routing)

Generalized forwarding: match plus action

Review: each router contains a forwarding table (aka: flow table)
= “match plus action” abstraction: match bits in arriving packet, take action
* destination-hased forwarding: forward based on dest. IP address

packet header

* many action possible: drop/copy/modify/log packet

forwarding table

(aka: flow table)

Network Layer: 4-22

Flow table abstraction

= flow: defined by header field values (in link-, network-, transport-layer fields)

= ceneralized forwarding: simple packet-handling rules

* match: pattern values in packet header fields
e actions: for matched packet: drop, forward, modify, matched packet or send

matched packet to con
* priority: disambiguate

troller
overlapping patterns

e counters: #bytes and #packets

Flow table

Router’s flow table define

match | action

router’s match+action rules

- By

"

~—

Network Layer: 4-23

Flow table abstraction

= flow: defined by header fields

= ceneralized forwarding: simple packet-handling rules

* match: pattern values in packet header fields

e actions: for matched packet: drop, forward, modify, matched packet or send
matched packet to controller

 priority: disambiguate overlapping patterns
e counters: #bytes and #packets

src = *.*.*.*, dest=3.4.*.* | forward(2)
src=1.2.*%.*, dest=*.**.* | drop
src=10.1.2.3, dest=*.*.*.* | send to controller

_ * - wildcard

Flow table
match | action

" O
N Network Layer: 4-24

OpenFlow: flow table entries

Match Action Stats

Packet + byte counters

1. Forward packet to port(s)

2. Drop packet

3. Modify fields in header(s)

4. Encapsulate and forward to controller

Header fields to match:

IP TCP/UDP TCP/UDP
Port MAC MAC Type ID Proto ToS Src Port Dst Port

e AN TVANT “psre pDst P

1 1 |

Link layer Network layer Transport layer
Network Layer: 4-25

OpenFlow: examples

Destination-based forwarding:

Switch| MAC | MAC | Eth | VLAN | VLAN IP IP IP IP TCP | TCP Acti
Port | src dst | type ID Pri Src Dst | Prot | ToS | s-port|d-port ction
* * * * * * * 51.6.0.8 * * * * port6

IP datagrams destined to IP address 51.6.0.8 should be forwarded to router output port 6

Firewall:
Switch| MAC | MAC | Eth | VLAN | VLAN IP IP IP IP TCP | TCP Acti
Port | src dst | type ID Pri Src Dst | Prot | ToS | s-port|d-port ction
* * * * * * * * * * * 22 drop
Block (do not forward) all datagrams destined to TCP port 22 (ssh port #)
Switch| MAC | MAC | Eth | VLAN | VLAN IP IP IP IP TCP | TCP Acti
Port | src dst | type ID Pri Src Dst | Prot | ToS | s-port|d-port ction
* * * * * * 128119.1.1 * * * * * drop

Block (do not forward) all datagrams sent by host 128.119.1.1

Network Layer: 4-26

OpenFlow: examples

Layer 2 destination-based forwarding:

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

VLAN
Pri

P
Src

IP
Dst

P
Prot

IP
ToS

TCP

s-port

TCP
d-port

Action

*

22:A7:23:
11:E1:02

layer 2 frames with destination MAC address 22:A7:23:11:E1:02 should be forwarded to
output port 3

%

*

*

*

*

*

*

*

port3

Network Layer: 4-27

OpenFlow abstraction

» match+action: abstraction unifies different kinds of devices

Router Firewall

* match: longest * match: IP addresses and
destination IP prefix TCP/UDP port numbers

* action: forward out a * action: permit or deny
link

Switch NAT

* match: destination MAC match: IP address and port

address e action: rewrite address and

* action: forward or flood port

Network Layer: 4-28

OpenFlow example

W ost he Orchestrated tables can create
B network-wide behavior, e.g.,:

= datagrams from hosts h5 and
h6 should be sent to h3 or h4,
via s1 and from there to s2

Host h5
10.3.0.5

Host hl _ Host h4
10.1.0.1 = 3 10.2.0.4
]
Host h2 Hosth3

10.1.0.2 10.2.0.3

Network Layer: 4-29

OpenFlow example

match action |
Bl g ‘{Host h6 Orchestrated tables can create
IP Dst = 10.2.*.* forward(3) e 10.3.0.6

- network-wide behavior, e.g.,:
= datagrams from hosts h5 and

N/

= h6 should be sent to h3 or h4,
10305 via s1 and from there to s2

sl
Host h1 ™ Host ha
10101 = 7 @ Z o0
3
‘/ / ‘/
match action e F::t"ﬁs . match action
ingress port = 1 Tgsltgzz 10.2.0.3 mgress_port =2 forward(3)
IP Src = 10.3.*.* | forward(4) IP Dst = 1O£2.02.3
= ingress port =
IP Dst = 10.2.*.*
IP Dst = 10.2.0.4| forward(4)

Network Layer: 4-30

Generalized forwarding: summary

= “match plus action” abstraction: match bits in arriving packet header(s) in
any layers, take action
* matching over many fields (link-, network-, transport-layer)
* local actions: drop, forward, modify, or send matched packet to
controller
e “program” network-wide behaviors
= simple form of “network programmability”
e programmable, per-packet “processing”

Network Layer: 4-31

Thank you!

	Slide 1: Διαχείριση Edge και Cloud δικτύων βασισμένων στο λογισμικό (CSIS109)
	Slide 2: Course resources
	Slide 3: Analogy: mainframe to PC evolution*
	Slide 4: The different types of clouds
	Slide 5: Layered Internet protocol stack
	Slide 6: Encapsulation
	Slide 7: Services, Layering and Encapsulation
	Slide 8: Encapsulation: an end-end view
	Slide 9: Network-layer services and protocols
	Slide 10: Two key network-layer functions
	Slide 11: Network layer: data plane, control plane
	Slide 12: Routing protocols
	Slide 13: Per-router control plane
	Slide 14: Software-Defined Networking (SDN) control plane
	Slide 15: Per-router control plane
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Traffic engineering: difficult traditional routing
	Slide 20: Traffic engineering: difficult
	Slide 21: Traffic engineering: difficult
	Slide 22: Generalized forwarding: match plus action
	Slide 23: Flow table abstraction
	Slide 24: Flow table abstraction
	Slide 25: OpenFlow: flow table entries
	Slide 26: OpenFlow: examples
	Slide 27: OpenFlow: examples
	Slide 28: OpenFlow abstraction
	Slide 29: OpenFlow example
	Slide 30: OpenFlow example
	Slide 31: Generalized forwarding: summary
	Slide 32

