
Διαχείριση Edge και
Cloud δικτύων

βασισμένων στο
λογισμικό (CSIS109)

Δρ. Ειρήνη Λιώτου

eliotou@hua.gr

4/3/2025

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

mailto:eliotou@hua.gr

▪Motivation: Constructing software networks to replace hardware
networks

▪ Transform HW machines to SW machines (with the exception of
those which handle the reception of terrestrial and wireless signals)

Virtualization: Concept

4-2

▪ Flexibility: size of the virtual devices (e.g. routers can change
depending on their workload)
• Little resources at night-time vs. very large at peak times

▪ Energy efficiency:
• Share the resources more effectively

• Move those resources

• Group them together on physical machines

• Put other idle machines on stand-by

Virtualization: Benefits

Network Layer: 4-3

▪ This is a software program that enables multiple virtual machines
(VMs) to run simultaneously
• Macroscopic scale → simultaneously (in parallel)

• Microscopic scale → sequentially

• Each VM’s processing time must be sufficiently short to give the impression of
parallelism

Hypervisor

Network Layer: 4-4

▪ The hypervisor is a Virtual Machine Monitor
(VMM), operating on standard hardware
platforms

▪ VMs are “domains” running on top of the
hypervisor

▪ Each VM may have its own operating system
and applications

▪ The VMM isolates the different VMs and
manages the sharing of resources, so that the
execution of one VM does not affect the
performance of the others

▪ Multiplexing – De-multiplexing

Hypervisor

Network Layer: 4-5

▪ The user domains employ virtual input/output peripherals,
controlled by virtual drivers, to ask the “dom0” for access to the
peripheral.

▪ Each user domain has its own virtual network interfaces, known as
foreground interfaces, required for network communication

▪ The background interfaces are created in the dom0, corresponding
to each foreground interface in a user domain, and act as proxy

▪ The foreground interfaces are perceived by the operating systems,
working on the user domains, as real interfaces

▪ “Bridge mode”

User domain interfaces

Network Layer: 4-6

▪VMs can be used to create virtual networks, a.k.a. software networks

▪Need to link VMs together as if they were different physical machines

Software networks

Network Layer: 4-7

“Per-service” or
“personalized”
software network

▪Migration of e.g. a router from one physical node to another
• When a node begins to fail or is overloaded

▪Migration of a node does not involve transporting the whole code
• The program needed is already present in the remote node, but is idle

• Begin running the program and send the node configuration info

▪ Isolation is important, so that an attack on one network does not
affect the other networks
• A token-based algorithm is used (The networks spend their tokens on the

basis of certain tasks performed, such as the transmission of n bytes)

Software networks’ properties

Network Layer: 4-8

▪Used to characterize an
information- and operation
system for a company

▪ Business applications

▪Applications to control or
orchestrate the environment

▪ “Autopilot systems”
(orchestrators)

The 5 domains necessary

Network Layer: 4-9

▪ Standardization of SDN by Open Network Foundation (ONF)

ONF architecture

Network Layer: 4-10

Detailed ONF architecture

Network Layer: 4-11

▪ The northbound interface facilitates communication between the application
level and the controller. Its purpose is to describe the needs of the application
and to pass along the commands to orchestrate the network.

▪ The southbound interface describes the signaling necessary between the control
plane and the virtualization layer. The controller must be able to determine the
elements that will make up the software network for which it is responsible.

▪ In the other direction, the current network resource consumption must be fed
back so that the controller has as full a view as possible of the usage of the
resources.

▪ The eastbound interface enables two controllers of the same type to
communicate with one another and make decisions together.

▪ The westbound interface must also facilitate communication between two
controllers, but ones which belong to different sub-networks.

Interfaces

Network Layer: 4-12

▪Goal: decouple the network functions from the network equipment

▪ Standardize network functions, virtualizing them and facilitating their
execution in different places from the original physical machine.

▪ Enable to position the software performing the functions of a device
on a different machine than the device itself (e.g. in the Cloud)

NFV (Network Functions Virtualization)

Network Layer: 4-13

1. “Architecture of the Virtualization, produces a reference architecture for
a virtualized infrastructure and points of reference to interconnect the
different components of that architecture.

2. “Management and Orchestration”, defines the rollout, instantiation,
configuration and management of network services.

3. “Software Architecture”, defines the reference software architecture for
the execution of virtualized functions.

4. “Security Expert Group”, works on the security of the software
architecture.

5. “Performance and Portability Expert Group”, provides solutions to
optimize performances and manage the portability of the VMs.

NFV working groups

Network Layer: 4-14

SDN principles

Network Layer: 4-15

Software defined networking (SDN)

Network Layer: 5-16

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1: generalized “flow-based”
forwarding (e.g., OpenFlow)

2. control, data
plane separation

3. control plane functions
external to data-plane
switches

…routing
access
control

load
balance4. programmable

control
applications

Software defined networking (SDN)

Network Layer: 5-17

Data-plane switches:
▪ fast, simple, commodity switches

implementing generalized data-plane
forwarding in hardware

▪ flow (forwarding) table computed,
installed under controller supervision

▪ API for table-based switch control
(e.g., OpenFlow)

• defines what is controllable, what is not

▪ protocol for communicating with
controller (e.g., OpenFlow)

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

Software defined networking (SDN)

Network Layer: 5-18

SDN controller (network OS):
▪ maintain network state

information

▪ interacts with network control
applications “above” via
northbound API

▪ interacts with network switches
“below” via southbound API

▪ implemented as distributed system
for performance, scalability, fault-
tolerance, robustness

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

Software defined networking (SDN)

Network Layer: 5-19

network-control apps:

▪ “brains” of control:
implement control functions
using lower-level services, API
provided by SDN controller

▪ unbundled: can be provided by
3rd party: distinct from routing
vendor, or SDN controller

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

▪ Orchestration is the automated management of
compute, networking, and storage resources to deploy
and operate applications efficiently.

▪ OpenStack provides orchestration tools that automate
the provisioning, scaling, and lifecycle management of
workloads, including Virtual Network Functions (VNFs)
in Network Function Virtualization (NFV)
environments.

▪ OpenStack is an open-source cloud computing
platform that allows users to create and manage
public and private clouds. It provides Infrastructure-as-
a-Service (IaaS) by enabling the deployment of VMs,
storage, networking, and other cloud resources.

OpenStack cloud management system

Network Layer: 4-20

Components of SDN controller

Network Layer: 5-21

Network-wide distributed, robust state management

Communication to/from controlled devices

Link-state info switch infohost info

statistics flow tables…

…

OpenFlow SNMP…

network
graph intent

RESTful
API

…
Interface, abstractions for network control apps

SDN
controller

routing access
control

load
balance

communication: communicate
between SDN controller and
controlled switches

network-wide state
management: state of networks
links, switches, services: a
distributed database

interface layer to network
control apps: abstractions API

OpenFlow protocol

Network Layer: 5-22

▪ operates between controller, switch

▪ TCP used to exchange messages

• optional encryption

▪ three classes of OpenFlow messages:

• controller-to-switch

• asynchronous (switch to controller)

• symmetric (misc.)

▪ distinct from OpenFlow API

• API used to specify generalized
forwarding actions

OpenFlow Controller

OpenFlow: controller-to-switch messages

Network Layer: 5-23

Key controller-to-switch messages
▪ features: controller queries switch

features, switch replies
▪ configure: controller queries/sets

switch configuration parameters
▪ modify-state: add, delete, modify flow

entries in the OpenFlow tables
▪ packet-out: controller can send this

packet out of specific switch port

OpenFlow Controller

OpenFlow: switch-to-controller messages

Network Layer: 5-24

Key switch-to-controller messages
▪ packet-in: transfer packet (and its

control) to controller. See packet-out
message from controller

▪ flow-removed: flow table entry deleted
at switch

▪ port status: inform controller of a

change on a port.

Fortunately, network operators don’t “program” switches by creating/sending
OpenFlow messages directly. Instead use higher-level abstraction at controller

OpenFlow Controller

SDN: control/data plane interaction example

Network Layer: 5-25

Link-state info switch infohost info

statistics flow tables
…

…

OpenFlow SNMP
…

network
graph

intent
RESTful

API
…

Dijkstra’s link-state
routing

s1
s2

s3
s4

S1, experiencing link failure uses
OpenFlow port status message to
notify controller

1

SDN controller receives OpenFlow
message, updates link status info

2

Dijkstra’s routing algorithm
application has previously registered
to be called when ever link status
changes. It is called.

3

Dijkstra’s routing algorithm
access network graph info, link
state info in controller, computes
new routes

4
1

2

3

4

SDN: control/data plane interaction example

Network Layer: 5-26

Link-state info switch infohost info

statistics flow tables
…

…

OpenFlow SNMP
…

network
graph

intent
RESTful

API
…

Dijkstra’s link-state
routing

s1
s2

s3
s4

link state routing app interacts
with flow-table-computation
component in SDN controller,
which computes new flow tables
needed

5

controller uses OpenFlow to
install new tables in switches
that need updating

6

5

1

2

3

4

Google ORION SDN control plane

ORION: Google’s SDN control plane (NSDI’21): control plane for
Google’s datacenter (Jupiter) and wide area (B4) networks

Orion SDN architecture and core apps
▪ routing (intradomain, iBGP), traffic

engineering: implemented in applications
on top of ORION core

▪ edge-edge flow-based controls (e.g.,
CoFlow scheduling) to meet contract SLAs

▪ management: pub-sub distributed
microservices in Orion core, OpenFlow for
switch signaling/monitoring

Note: ORION provides intradomain services within Google’s network

OpenDaylight (ODL) controller

Network Layer: 5-28

Network Orchestrations and Applications

Southbound API

Service Abstraction
Layer (SAL)

config. and
operational data

store

REST/RESTCONF/NETCONF APIs

messaging

OpenFlow NETCONF SNMP OVSDB …

Northbound API

Traffic
Engineering …Firewalling Load Balancing

Basic Network FunctionsEnhanced
Services

…

… Forwarding
rules mgr.

AAA

Host
Tracker

Stats
mgr.

Switch
mgr.

Topology
processing

Service Abstraction Layer:

▪ interconnects internal,
external applications
and services

ONOS controller

Network Layer: 5-29

Network Applications

Southbound API

Northbound API

Traffic
Engineering …Firewalling Load Balancing

southbound
abstractions,
protocolsOpenFlow Netconf OVSDB

device link host flow packet

northbound
abstractions,
protocols

REST API Intent

ONOS
distributed
core

statisticsdevices

hosts

links

paths flow rules topology

▪ control apps separate
from controller

▪ intent framework: high-
level specification of
service: what rather
than how

▪ considerable emphasis
on distributed core:
service reliability,
replication performance
scaling

Software Defined Networking (SDN) Made Simple by Vipin Gupta, Linux & Cloud Engineer, Udemy

https://www.udemy.com/course-dashboard-redirect/?course_id=1799014

Practical scenario

4-31

4-32

Thank you!

	Slide 1: Διαχείριση Edge και Cloud δικτύων βασισμένων στο λογισμικό (CSIS109)
	Slide 2: Virtualization: Concept
	Slide 3: Virtualization: Benefits
	Slide 4: Hypervisor
	Slide 5: Hypervisor
	Slide 6: User domain interfaces
	Slide 7: Software networks
	Slide 8: Software networks’ properties
	Slide 9: The 5 domains necessary
	Slide 10: ONF architecture
	Slide 11: Detailed ONF architecture
	Slide 12: Interfaces
	Slide 13: NFV (Network Functions Virtualization)
	Slide 14: NFV working groups
	Slide 15: SDN principles
	Slide 16: Software defined networking (SDN)
	Slide 17: Software defined networking (SDN)
	Slide 18: Software defined networking (SDN)
	Slide 19: Software defined networking (SDN)
	Slide 20: OpenStack cloud management system
	Slide 21: Components of SDN controller
	Slide 22: OpenFlow protocol
	Slide 23: OpenFlow: controller-to-switch messages
	Slide 24: OpenFlow: switch-to-controller messages
	Slide 25: SDN: control/data plane interaction example
	Slide 26: SDN: control/data plane interaction example
	Slide 27: Google ORION SDN control plane
	Slide 28: OpenDaylight (ODL) controller
	Slide 29: ONOS controller
	Slide 30
	Slide 31: Practical scenario
	Slide 32

