Διαχείριση Edge και Cloud δικτύων βασισμένων στο λογισμικό (CSIS109)

Δρ. Ειρήνη Λιώτου

eliotou@hua.gr

8/4/2025

IEEE 802.11 Wireless LAN

IEEE 802.11 standard	Year	Max data rate	Range	Frequency
802.11b	1999	11 Mbps	30 m	2.4 Ghz
802.11g	2003	54 Mbps	30m	2.4 Ghz
802.11n (WiFi 4)	2009	600	70m	2.4, 5 Ghz
802.11ac (WiFi 5)	2013	3.47Gpbs	70m	5 Ghz
802.11ax (WiFi 6)	2020 (exp.)	14 Gbps	70m	2.4, 5 Ghz
802.11af	2014	35 – 560 Mbps	1 Km	unused TV bands (54-790 MHz)
802.11ah	2017	347Mbps	1 Km	900 Mhz

 all use CSMA/CA for multiple access, and have base-station and ad-hoc network versions

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802.11: Channels

- spectrum divided into channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!

802.11: Association

- arriving host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - then may perform authentication
 - then typically run DHCP to get IP address in AP's subnet

802.11: passive/active scanning

passive scanning:

- (1) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent from selected AP to H1

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

IEEE 802.11: multiple access

- avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with detected ongoing transmission by another node
- 802.11: no collision detection!
 - difficult to sense collisions: high transmitting signal, weak received signal due to fading
 - · can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/CollisionAvoidance

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2

802.11 receiver

if frame received OK return ACK after **SIFS** (ACK needed due to hidden terminal problem)

Avoiding collisions (more)

idea: sender "reserves" channel use for data frames using small reservation packets

- sender first transmits small request-to-send (RTS) packet to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

Collision Avoidance: RTS-CTS exchange

802.11 frame: addressing

802.11 frame: addressing

802.11 frame: addressing

802.11: mobility within same subnet

 H1 remains in same IP subnet: IP address can remain same

switch: which AP is associated with H1?

 self-learning: switch will see frame from H1 and "remember" which switch port can be used to reach H1

802.11: advanced capabilities

Rate adaptation

- base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies
 - 1. SNR decreases, BER increase as node moves away from base station
 - 2. When BER becomes too high, switch to lower transmission rate but with lower BER

802.11: advanced capabilities

power management

- node-to-AP: "I am going to sleep until next beacon frame"
 - AP knows not to transmit frames to this node
 - node wakes up before next beacon frame
- beacon frame: contains list of mobiles with AP-to-mobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent;
 otherwise sleep again until next beacon frame

Small cells

- The new generation of cells of very small dimensions
- Pros:
 - Reuse of frequencies
 - Lower energy consumption
 - Adaptation of cell size
- Various forms:
 - femtocells, which correspond to a home
 - metrocells, which provide coverage in the street
 - hotspots, which are set up in public spaces
 - picocells, for companies

Small cells and backhaul networks

((y)) Backhaul network Access Point

◆ Backhaul network

Femtocells

- Femtocell: antenna mounted on the user's home gateway
- Around ten meters (s.t. obstacles and interference)
- Multiplication of the cells, densification of the network, drop in the power of the devices
- The connection between the Home Gateway and the Femto Gateway uses fiber-optic technology, and often ADSL connection

Femtocells

■ Two radio interfaces: Wi-Fi and "xG"

UMA - Unlicensed Mobile Access

RNC – Radio Network Controller

HNB - Home NodeB

HeNB - Home eNodeB

Hotspots

- Wi-Fi access points that facilitate Internet connection
- Open to all clients / through subscription
- Metrocells = small cells installed on the streets to handle 4G traffic
- Offloading purposes (alleviate the workload of the large antennas)
- The difficulty for a hotspot is to manage to offer QoS to the clients' applicational flows

Microcells & Wi-Fi Passpoint

Microcells:

- Designed for use by companies
- Provide access to intranet and internet, using two distinct SSIDs

Wi-Fi Passpoint:

Passpoint is a solution which helps to relieve the workload of "xG" antennas by offloading, giving users the option of connecting in a way that is totally transparent to the xG networks, using Wi-Fi

Wi-Fi Passpoint

- A program, installed on certified devices, automatically manages the network connection, authentication, authorization and underlying security in a manner which is totally transparent to the user
- Passpoint takes care of the discovery and selection of a network (s.t. user preferences, operator policies, network availability)
- The network connection takes place seamlessly
- Passpoint can also be used to instantaneously open accounts when the user does not have a subscription to a telecom operator
- Passpoint creates a global platform centered on four protocols based on EAP (Extensible Authentication Protocol)

Passpoint advantages

- Transparent authentication
- Offers Internet for electronic devices without a browser (cameras, onboard devices in cars, etc.)
- Offers simplicity of connection and creation of new subscriptions

Backhaul networks

- Backhaul networks form the intermediary networks between the access networks to which the clients are connected and the core
- Backhaul networks have essentially consisted of links between DSLAMs and the core network, or between Nodes-B and the core
- New trend: mesh networks, or networks of access points, in which the boxes are directly interconnected
- APs have two Wi-Fi ports: one to communicate with the neighboring access points, and the other to connect the clients

Backhaul networks

Software radio and radio virtual machine

- Software radio, or SDR (Software-Defined Radio), defines a radio transmitter or receiver which is in software, rather than hardware, form
- The computational power may be hosted on the device itself, or in the mobile Cloud, in a local Cloudlet, a regional Cloud or even a central Cloud
- Emergence of using a single antenna for all radio communications

Virtualization in Wi-Fi

- Connections can be gathered together on virtualized shared APs, so as to avoid having to deploy a physical AP per small cell and per operator
- The physical antenna is shared among all virtual APs
- The physical box has a hypervisor upon which the VMs are founded

Other forms of virtualization

- A Home NodeB can be virtualized and play host to several operators without them competing for infrastructure
- Virtualization of APs leads to the creation of several cells which overlap one another and are served taking turns
- Packets have to pass through the same antenna one after another

Cloud-Radio Access Network (C-RAN)

- All control algorithms are handled by datacenters
- The access network is eliminated completely, and replaced with a solution where the radio signal is sent directly to the datacenter
- Signal processing takes place in the Cloud
- The same antenna can be used for different signals (technologies)
- The Cloud unscrambles the signals

Mobile Cloud Networking (MCN)

 The basic element is the mobile terminal, which moves around and requests services from a Cloud which, for its part, is fixed

Mobile Cloud refers to technologies where the Cloud itself is mobile

MCN perspectives

- There are two predominant orientations:
 - an **application orientation**, which means that a mobile device with limited resources is able to handle applications which require intensive computations or more memory than the terminal has
 - Mobile Cloud gaming / Mobile Game as a Service (MGaaS) / AR / Optical Character Recognitions applications / Natural language use
 - a network orientation, which involves the optimization of algorithms for the control of mobile services
 - Firewalls / Handover control / Mobile attachment

- Mobile phone (lightweight)
 using a central Cloud to
 handle "hungry" applications:
 - CPU intensive
 - High memory requirements
 - Resources for Big Data

- Cloud is no longer central but local or at least not too far from the user
- The resources can be hosted on other mobile devices
- Neighboring mobile devices may form a Cloud
- Loal datacenter required (e.g. at DSLAM or home GW)

- Virtual Cloud concept
- Single Cloud usually insufficient to contain all requested services => user requests connection to several Cloud providers
- "Intermediary" server or "Sky" provider with extensive knowledge of all the Clouds => can choose the best Cloud

- Small cloud or "Cloudlet" which moves with the client
- Actually, the connection to different Cloudlets gives that impression
- Handover = terminal attaches to a new Cloudlet
- Cloudlet = concept of a small Cloud situated in a zone with a very high demand

Optimization criteria to build hierarchy of Clouds

- performance and reliability of applications for mobiles
- performance of control applications for mobiles
- minimization of energy consumption by the terminals, datacenters, etc.
- availability
- high security:
 - m-commerce
 - m-Cloud access
 - m-payment

Mobile Clouds

- Mobile Cloud = a set of small datacenters which form a Cloud
- Challenge: mobility of such Cloudlets, attach/detach
 - If they move simultaneously → VANET (Vehicular Area Network) supports the mobile Cloud
 - If they move independently & uncoordinated → difficulty in forming the mobile Cloud

Each vehicle has its own femto-datacenter

Mesh or ad-hoc network

Examples of mobile clouds

Thank you!