
Διαχείριση Edge και 
Cloud δικτύων 

βασισμένων στο 
λογισμικό (CSIS109)

Δρ. Ειρήνη Λιώτου

eliotou@hua.gr

6/5/2025

Χαροκόπειο Πανεπιστήμιο – Τμήμα Πληροφορικής και Τηλεματικής

mailto:eliotou@hua.gr


▪ The Internet of Things (IoT) encapsulates a vision of a world in which 
billions of objects with embedded intelligence, communication means, 
and sensing and actuation capabilities will connect over IP networks.

▪ These “things” or “objects:
• can be worn by users or deployed in the environment

• gather data from the environment and act upon it

• usually highly constrained, with limited memory and available energy stores

• subject to stringent low-cost requirements

Internet of Things



▪ Introducing computing resources at the edge of access networks may 
bring several benefits that are key for IoT scenarios: low latency, real-
time capabilities and context-awareness.

▪ Edge nodes (servers or micro data-centers on the edge) may act as 
an interface to data streams coming from connected devices, 
objects, and applications.

▪ The stored Big Data can then be processed with new mechanisms, 
such as machine and deep learning, transforming raw data 
generated by connected objects into useful information.

▪ The useful information will then be disseminated to relevant devices 
and interested users or stored for further processing and access.

Edge Computing paradigm



▪WSNs promised wide support of interactions between people and 
their surroundings:
• “Wireless”: mobility support and ease of system deployment;
• “Sensor”: capability to perceive and interact with the world;
• “Networks”: plurality of communicating devices.

▪ Sources placed around the areas to be monitored and the sinks 
located in easily accessible places.

▪ Sources send information to sinks in accordance with different 
scheduling policies: time-driven, event-driven, query-driven.

▪ Synonymous to “ad-hoc networks” = general, infrastructure-less, 
cooperation-based, opportunistic networks, customized for specific 
scenarios.

Wireless Ad-hoc and Sensor Networks:
The Ancestors



▪ self-configuration and self-organization in infrastructure-less 
systems;

▪ support for cooperative operations in systems with heterogenous 
members;

▪multi-hop peer-to-peer communication among network nodes, with 
effective routing protocols;

▪ network self-healing behavior providing a sufficient degree of 
robustness and reliability;

▪ seamless mobility management and support of dynamic network 
topologies.

Key challenges in WSNs/ad-hoc networks



▪ Home and Building Automation (smart home): home security and energy 
efficiency, light and room control

▪ Smart Cities: healthcare, media, energy and the environment, safety, and 
public services

▪ Smart Grid: smart meters, smart appliances, renewable energy resources, 
and energy-efficient resources

▪ Industrial Internet of Things (IIoT): manufacturing, logistics, oil and gas, 
transportation, energy/utilities, mining and metals, aviation and others

▪ Capabilities:
• sensor-driven computing: converting sensed data into insights that operators and 

systems can act on;
• industrial analytics: turning data from sensors and other sources into actionable 

insights;
• intelligent machine applications: integrating sensing devices and intelligent 

components into machines.

IoT-enabled Applications



▪ Smart Farming (precision farming or smart agriculture): applications 
for monitoring the weather, automation for more precise application 
of fertilizers and pesticides, and the adoption of planning strategies 
for maintenance.

▪Drones and sensor networks (to collect data) and cloud platforms (to 
manage the collected data).

▪ Fleet management, livestock monitoring, fish farming, forest care, 
indoor city farming.

▪Aim at supporting farmers in their decision processes through 
decision-support systems => less waste and increase in efficiency.

IoT-enabled Applications



▪ Current IoT applications have prior knowledge of the things they will work 
with: there are established communication protocols, data formats, and 
application-specific interaction patterns

▪ Smart objects manufactured by the same vendor typically need to be 
accessed through legacy software, resulting in a plethora of applications 
that end-users must install and use.

▪ Mobility challenge if users want to fully and seamlessly interact with 
things while moving / entering other environments.

▪ Smart objects should be able to adapt dynamically to particular 
conditions, such as a change in their battery level or hosted resources, or 
the presence of specific users => require upgrades or new software to be 
installed

Interoperability challenges



▪ In order to avoid dependence on specific legacy software all actors 
need to speak the same language: IP =>
• Define open standards for communication (e.g., 6LoWPAN/CoAP);

• Map the traditional IP-based Internet stack to the IoT.

▪ The IoT will be a network of heterogeneous interconnected devices. 
This will be the infrastructure for the so-called “Web of Things” 
(WoT).

▪ CoAP has been designated as the standard protocol for the WoT, 
similar to the position of HTTP for the web.

IoT Architecture



▪ IEEE 802.15.4 standard and Zigbee
▪ 868.0–868.6 MHz: used in Europe

▪ low bit-rate connectivity

▪ typically between 10 and 100 m

▪ Low-power Wi-Fi (802.11ah / Wi-Fi HaLow)

▪ Bluetooth and its newest energy-efficient version Bluetooth Low Energy 
(BLE)
▪ 50Mbps, 240m

▪ Protocols in the area of power line communications (PLC)

Physical/Link Layer



▪ The depletion of IPv4 addresses makes it impossible to assign public 
IPv4 addresses to objects.

▪ΝΑΤ would be needed, which would involve complex configuration 
management to ensure reachability of smart objects.

▪ => The only feasible solution to create a global, sustainable, and 
scalable IoT is to adopt IPv6 at the network layer (3.4 × 1038 unique 
IP addresses).

▪ Low-power wireless personal area networks (WPANs) have special
characteristics => an adaptation layer that fits IPv6 packets to the 
IEEE 802.15.4 specifications is needed.

▪ The goal of 6LoWPAN is to transmit a small IPv6 datagram over a 
single IEEE 802.15.4 hop.

Network Layer



▪ Transport: IoT scenarios call for energy-efficient, lightweight, and 
non CPU-intensive approaches to communication => UDP

▪Application: Dedicated web transfer protocol for low-power and 
lossy networks (LLNs), called the Constrained Application Protocol 
(CoAP), has been defined.

Transport/Application Layer



▪Amazon’s AWS IoT and Microsoft’s Azure IoT suite are probably the 
most popular cloud IoT platforms

The Verticals: Cloud-based Solutions



▪ Scalability

▪Availability

▪ Interoperability

▪ Security

▪ Evolution of systems

▪… So this approach cannot be the reference architecture for a 
scalable and evolutionary IoT.

Requirements for a “long-term” design



▪ It should be built in a similar way to the Internet (web-based approach)!
• Referencing of resources through uniform resource identifiers (URIs)
• Introduction of the Hypertext Transfer Protocol (HTTP)

▪ REpresentational State Transfer (REST) is the architectural style behind the 
web

▪ REST defines a set of rules and principles that all the elements of the 
architecture must conform to in order to build web applications that scale 
well, in terms of scalability and robustness

▪ Loose coupling means that the endpoints should contain as little 
information about each other as needed to work. All necessary missing 
information should be collected while interacting.

REST Architectures: The Web of Things



▪ REST is based on the concept of a resource. A resource can be 
defined as any relevant entity in an application’s domain that is 
exposed on the network. 

▪A webpage, a video, and an order on an e-commerce website can all 
be considered web resources. 

▪A resource is anything with which a user interacts while progressing 
toward some goal.

Resource-oriented architectures



▪An alternative to a resource-oriented architecture (ROA) is a service-
oriented architecture (SOA).

▪ SOA refers to an architecture where two endpoints communicate 
through a pre-defined set of messaging contracts. A client starts 
interacting with a server by retrieving the list of available services 
and how these can be mapped to HTTP messages, in a Web Service 
Definition Language (WSDL) document.

▪However, this is a weakness: if a server changes its services, a client 
needs to get access to the new WSDL or its functionalities are 
invalidated.

Service-oriented architecture



▪ A REST architecture builds on:
• clients (or user agents, such as browsers), which are the application interface and 

initiate the interactions
• servers (origin servers) host resources and serve client requests.

▪ A REST architecture is characterized by uniform interfaces: all connectors 
within the system must conform to this interface’s constraints.

▪ Collectively, REST defines the following principles:
• identification of resources
• manipulation of resources through representations
• self-descriptive messages
• hypermedia as the engine of application states.

▪ An application that follows the above principles is termed RESTful.

REST architectures



▪ Resources are never exchanged directly by endpoints. Instead, 
representations of resources are exchanged between endpoints.

▪A representation is a view of the state of the resource at a given 
time. This view can be encoded in one or more transferable formats, 
such as XHTML, Atom, XML, JSON, plain text, comma-separated 
values, MP3, or JPEG.

Representation of resources



▪ Uniform resource identifiers (URIs) identify a resource univocally.

▪ A URI can be used to address a resource, so that it can be located, retrieved, and 
manipulated.

▪ There is a 1:N relationship between a resource and URIs: a resource can be mapped 
to multiple URIs, but a URI points exactly to one resource.

▪ URIs can be of two kinds:
• a uniform resource name (URN) specifies the name of a resource (e.g., urn:ietf:rfc:2616);

• a uniform resource locator (URL) specifies how to locate the resource, (e.g., 
http://example.com/books/123).

▪ All URIs take the following form: 
• scheme:scheme-specific-part.

Resource identifiers

http://example.com/books/123


▪ Statelessness implies that no state information must be kept on the 
client and server sides, thus avoiding the need to use cookies or to 
introduce the concept of sessions, which demand a stricter coupling 
between the endpoints.

▪ In order to preserve statelessness, each message must be self-
descriptive.

▪ This means that all requests must contain all the information to 
understand the request so that servers can process them without 
context (about the state of the client).

Statelessness



▪ RESTful applications make forward progress by transitioning 
from one state to another, just like a finite-state machine 
(FSM).

▪ A state is reached when the server transfers a representation 
of the resource because of a client request. The next possible 
transitions are discovered when the application reaches a 
new state (gradual reveal). 

▪ Resource representations that embed links are called 
hypermedia. These links represent the possible transitions to 
the next states.

▪ In essence, the state of a resource identified by a URI is 
contained in the data section of the resource representation 
and the transition to the next states are contained in the 
links.

Applications as Finite-state Machines



▪ The final principle of REST is “hypermedia as the engine of application 
state”, or HATEOAS.

▪ RESTful applications progress according to the following steps:

1. The client starts from an entry URI or a bookmark.

2. The response to a GET request includes a hypermedia representation.

3. The representation contains links that define the possible transitions to 
the next states of the FSM.

4. The client selects a link to follow and issues the next request; that is, it 
triggers a transition to the next state.

5. The client can also go back.

Hypermedia



▪ The Richardson maturity model 
is a classification system for 
web-based applications.

▪ It can be used to answer the 
question “How RESTful is a web 
application?”

▪ The higher the level, the more 
RESTful an application is: the 
higher the level, the less 
coupling exists between clients 
and servers.

Richardson Maturity Model



▪All the semantics of an 
interaction are strictly tied to 
the syntax that clients and 
servers use.

▪ The client must have a very 
deep a-priori knowledge of:
• the web service
• the actions that can be triggered
• the meaning of XML document 

tags and attributes.

▪ If the web service changes 
something, the client just 
breaks.

Level 0: the Swamp of POX (plain old XML)



▪ It models interactions by targeting resources 
instead of services.

▪ Applications that use the concept of resources 
rather than services are classified as Level 1.

▪ Action names and parameters are typically 
mapped directly to a URI, rather than 
embedded in the semantics of XML/SOAP 
payloads.

▪ The action is triggered by sending an HTTP GET 
or POST request to the targeted URI, for 
example:
• GET http://example.com/people/123?action=delete

Level 1: Resources



▪ It moves the semantics from the URI to HTTP verbs when manipulating 
resources.

▪ Resources are still addressable using URIs, and each resource can be 
manipulated using HTTP methods. Each method has a particular meaning 
and maps to a specific CRUD (create-read-update-delete) operation.

▪ According to RFC 2616, HTTP methods can be safe and/or idempotent.
• Safe means that they have no effect on the resource (the resource remains the 

same). 

• Idempotent means that the same request can be executed multiple times with the 
same effect as executing it once.

Level 2: HTTP Verbs



CRUD Operation HTTP Method Safe? Description

Create POST No Creates a new resource.

Read GET Yes
Retrieves a resource; 
read-only.

Update PUT No
Replaces an existing 
resource.

Delete DELETE No Removes a resource.

“Safe” concept



Method Idempotent? Why

GET Yes
Retrieves data, doesn’t change 
anything.

PUT Yes
Replaces a resource — doing it 
again just replaces it with the same 
data.

DELETE Yes
Deleting something that's already 
gone doesn’t change the state 
further.

POST No
Creates a new resource — sending 
it twice usually creates duplicates.

“Idempotent” concept



1. Creating a resource



2. Retrieving a resource



3. Updating a resource



4. Deleting a resource



HTTP Response Code Semantics



▪HTTP is no longer used just as a transport for requests, but instead is 
also used to describe what manipulation on the resource is being 
requested.

▪ Level 2 applications use:
• HTTP verbs and status codes to coordinate interactions and manipulate 

resources;
• HTTP headers to convey information (e.g., the Location header to indicate the 

URI of a created resource).

▪However, there is still some coupling between client and server 
applications: the client must know the URI of a resource and which 
methods can be invoked.

Describing Level 2 Applications



▪ The solution to this problem is to use a Web Application Description 
Language (WADL) document.

▪A WADL document is a static description used to advertise the 
endpoints, the methods, and the representation formats of the 
resources hosted by a web application. WADL documents describe:
• sets of resources;

• relationships between resources;

• methods that can be applied to each resource, together with expected 
input/output and formats;

• resource representation formats (MIME types and data schemas).

WADL



▪ HATEOS principle: ultimate guarantee that client and server applications 
are fully decoupled

▪ Hypermedia embed links to drive application states

▪ When clients reach a state of the application, the representation of the 
resource has a double goal:
• it describes the current state;
• it includes link information to drive the client perform the next intended transitions, 

according to what the server expects.

▪ The state of a resource is the aggregation of:
• data: values of information items belonging to that resource;
• links: representing transitions to possible future states of the current resource.

Level 3: Hypermedia



▪A client capable of understanding the meaning of the hypermedia is 
fully autonomous in the execution of all the operations, regardless of 
any change on the server. 

▪A server can change the URI scheme independently without breaking 
clients and can introduce new functionalities (states) just by adding 
more links in the hypermedia. 

▪HATEOAS fully enables true independent evolution of systems.

▪An IoT standard for hypermedia to be used in constrained 
environments is the CoRE Link Format

Level 3: Hypermedia



Summary (ChatGPT)



▪Modeling the IoT using web-oriented, RESTful principles can be a 
way to start to develop a global infrastructure of interconnected 
objects and to foster the development of scalable and robust IoT 
applications.

▪ The basic idea is to consider smart objects as tiny servers that 
implement Level 3 IoT applications using hypermedia and the CoRE 
Link Format.

▪ Full interoperability between the web and the WoT.

The Web of Things



▪Messaging systems implement an asynchronous communication 
model and loosely couple the senders with the consumers of 
messages, thus allowing for more flexibility and scalability.

▪Messaging systems implement one of two asynchronous messaging 
approaches: message queues or pub/sub.

▪Message queues: The sender sends a message to a queue on a 
server, where it is stored/persistent: the message is not erased 
immediately but is kept in memory until a consumer receives it. Only 
once delivered is the message deleted from the queue.

Messaging Queues and Publish/Subscribe
Communications



▪ Two kinds of entities exist: publishers and subscribers. Publishers 
send messages to a “topic” on the server.

▪ Subscribers can subscribe to a topic to receive a copy of all messages 
that have been published on that topic. This means that a message 
can be consumed by multiple consumers.

Publish/Subscribe



▪ The separation between publishers and subscribers is possible 
thanks to intermediary nodes, called brokers. 

▪ Brokers can be implemented as message queues. Typically, the 
broker is involved for the following functions:
• publishing: publishers send messages to the broker;

• subscriptions: subscribers register to receive messages.

▪Upon receiving a message from a publisher, the broker is responsible 
for dispatching messages to the subscribers, according to their 
subscriptions.

Publish/Subscribe



▪ + Loose coupling: Publishers need not know which subscribers receive 
messages or even if they exist. 

▪ + Scalablility: Since brokers only need to route messages, they can be 
replicated easily to support higher volumes of data being transferred.

▪ + Lightweight implementation: Most of the load is carried by the 
broker.

▪ - No content-type negotiation can be performed

▪ - No support for end-to-end security

▪ - the broker infrastructure must scale in order to avoid issues related 
to load peaks

Publish/Subscribe pros & cons



▪ A lightweight, open-source, TCP-based pub/sub protocol.

▪ Particularly suited to constrained environments where message protocol 
overhead and message size should be minimal.

▪ Messages are published to a shared topic space inside the broker. Topics 
are used as filters on the message stream from all publishers to the broker.

▪ Messages are delivered to all clients that have subscribed with a matching 
topic filter.

▪ The broker applies the subscription filters to the message stream it 
receives in order to efficiently determine to which clients a message 
should be dispatched.

Message Queue Telemetry Transport (MQTT)



Chapters 1, 2, 3

References

Network Layer: 4-46



Thank you!


	Slide 1: Διαχείριση Edge και Cloud δικτύων βασισμένων στο λογισμικό (CSIS109)
	Slide 2: Internet of Things
	Slide 3: Edge Computing paradigm
	Slide 4: Wireless Ad-hoc and Sensor Networks: The Ancestors
	Slide 5: Key challenges in WSNs/ad-hoc networks
	Slide 6: IoT-enabled Applications
	Slide 7: IoT-enabled Applications
	Slide 8: Interoperability challenges
	Slide 9: IoT Architecture
	Slide 10: Physical/Link Layer
	Slide 11: Network Layer
	Slide 12: Transport/Application Layer
	Slide 13: The Verticals: Cloud-based Solutions
	Slide 14: Requirements for a “long-term” design
	Slide 15: REST Architectures: The Web of Things
	Slide 16: Resource-oriented architectures
	Slide 17: Service-oriented architecture
	Slide 18: REST architectures
	Slide 19: Representation of resources
	Slide 20: Resource identifiers
	Slide 21: Statelessness
	Slide 22: Applications as Finite-state Machines
	Slide 23: Hypermedia
	Slide 24: Richardson Maturity Model
	Slide 25: Level 0: the Swamp of POX (plain old XML)
	Slide 26: Level 1: Resources
	Slide 27: Level 2: HTTP Verbs
	Slide 28: “Safe” concept
	Slide 29: “Idempotent” concept
	Slide 30: 1. Creating a resource
	Slide 31: 2. Retrieving a resource
	Slide 32: 3. Updating a resource
	Slide 33: 4. Deleting a resource
	Slide 34: HTTP Response Code Semantics
	Slide 35: Describing Level 2 Applications
	Slide 36: WADL
	Slide 37: Level 3: Hypermedia
	Slide 38: Level 3: Hypermedia
	Slide 39: Summary (ChatGPT)
	Slide 40: The Web of Things
	Slide 41: Messaging Queues and Publish/Subscribe Communications
	Slide 42: Publish/Subscribe
	Slide 43: Publish/Subscribe
	Slide 44: Publish/Subscribe pros & cons
	Slide 45: Message Queue Telemetry Transport (MQTT)
	Slide 46: References
	Slide 47

