The AI future of connected and shared mobility

George Dimitrakopoulos Eirini Liotou

13/5/2025

The 4 major trends in transport & mobility

Major trends in transport and mobility

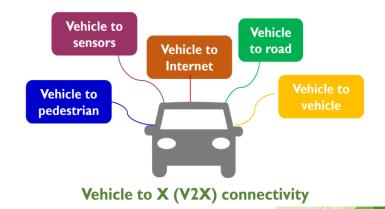
- Digital transformation in transport & mobility
 - Key digital technologies play a pivotal role
 - ▶ 4 major trends:
 - ► Electrification
 - Standardisation
 - Automatization
 - Digitalisation
- The result:
 - Electric, Connected, Autonomous & Shared (ECAS) vehicles

1. "ECAS" - Electric vehicle (EV)

Smart energy management

- ☐ Energy consumption optimization
- Real-time battery analytics and predictive maintenance
- Adjust energy usage based on driving patterns and environment

Charging optimization


- ☐ AI balances grid loads (load management)
- Provides location-based charging recommendations

2. "ECAS" - Connected vehicles

- Connected vehicles use wireless technology to "connect" to each other and/or to infrastructure
 - Cellular communication
 - Dedicated short-range communication (DSRC)
- Vehicular communications
 - V2V (Vehicle-to-Vehicle)
 - V2I (Vehicle-to-Infrastructure)
 - V2P (Vehicle-to-Pedestrian)
 - V2G (Vehicle-to-Grid)
 - V2B (Vehicle-to-Business)
 - V2D (Vehicle-to-Device)
 - V2C (Vehicle-to-Cloud)
 - V2X (Vehicle-to-Everything)

The era of connected vehicles

2. "ECAS" - Connected vehicles

- Al-driven connectivity
 - ► V2X facilitation, enhanced decisionmaking & optimization
- Dynamic route optimization
 - Real-time data insights
- Enhanced safety
 - Collision prediction & avoidance
 - Driver monitor & recommendation
- Autonomous operations
 - Seamless integration to fleets
 - Coordination
- Over-the-Air (OTA) updates
 - Vehicle performance
 - Dynamic adaptation
- Integration into smart cities
 - Al-optimized traffic lights, etc.

3. "ECAS" - Autonomous vehicles

- Al-Driven Decision-Making
 - "sensor fusion"
 - "perception"
 - "cognition"
 - "decision"
- Support for different levels of automation
 - Adapt behavior based on automation level & road conditions
- Enhanced safety
 - Predict potential hazards
 - Reduce human error
- Integration with shared-mobility

3. "ECAS" - Autonomous vehicles: SAE-level

Sources: Society of Automotive Engineers (SAE); National Highway and Traffic Safety Administration (NHTSA).

Copyright © 2018 Intol Corporation, All rights reserved, Intel, the Intel Logo is a trademark of Intel Corporation in the U.S. and/or other countries.

4. "ECAS" - Shared vehicles

- Dynamic demand prediction
 - Real-time data analysis to predict peak usage times
- Intelligent resource allocation
 - Fleet/shared vehicle distribution and allocation (avoid excess/shortage)
 - Minimize user waiting times
- Predictive ride scheduling
 - Based on user habits and patterns
- Multi-modal integration
 - End-to-end urban travel planning

Impact of ECAS

Impact of ECAS

- Increased safety
 - Reduction of human error and therefore number of accidents (90-95% of accidents are due to human errors)
 - Vulnerable Road Users (VRUs): Pedestrians and cyclists, road users with impairment, e.g. using a mobility aid, children playing on the road, elderly
- Social inclusion & mobility for all
 - Improved accessibility in case of e.g., physical, mental or age-related restrictions
- More efficient road occupancy
 - Traffic decongestion and less parking demand
- Creation of new business models
 - Car sharing services and shared mobility (community-centric model)
- Reduced perception of travel as lost time
 - Contributing thus to reduce the "cost" of travel time

Impact of ECAS

Environmental impacts

- Reduction in carbon emissions through electrification and integration of Vehicle-to-Grid (V2G) technology
- ▶ Shared mobility, fleet management, route optimisation, fuel efficiency
- Development of new transport services
 - Traffic safety related warnings & recommendations, traffic management
- Economic impact
 - Build the basis for further growth in the automotive sector
 - Reduce of transportation costs
 - Drive innovation for startups, etc.
- Educational impact and IP valorization
 - Future mobility will generate manifold knowledge on which skills are required by the future semiconductor, automotive and digital industry workforce

Main technological enablers:

- H/W components
- S/W technologies
- IN-VEHICLE architectures
- NETWORK-ENABLING ARCHITECTURES

Data collection sources

- Lidar: Measures distance by illuminating the target with laser light and measuring the reflection
- Radar: Detects objects and measures their speed using radio waves
- Cameras: Capture visual information for object recognition and environmental mapping
- Ultrasonic sensors: Used for detecting objects at close range, often in parking assistance
- GPS: Provides precise location data for navigation

Data collection functions

Goal: transform how cognition is realized and applied inside hardware

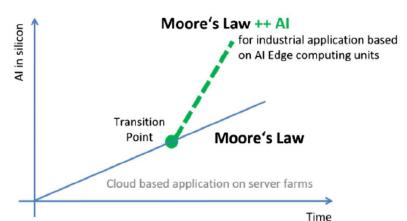
Function	Basic functionalities	Hardware required	Constraints and requirements
Perception	 Sense the environment using multiple modalities Identify key actors in the environment Identify their key characteristics 	Highly efficient, edge processors for preprocessing of data	Small and power efficient<1 W power budget1–10 TOPSReal time
Cognition	 Correlate information from multiple sensors to get a complete picture of each target Relate the state of the vehicle to the scene Develop a model of what is happening in the scene 	Neural network (NN) accelerator hardware close to the sensor	1-3 W power budget10-100 TOPSReal time
Context awareness and planning	 Understand static cues in the scene (detect if a pedestrian has made eye contact with your car) Understand dynamic cues in the scene (e.g., pedestrians hesitating, other vehicles moving to the side of the road,) Model the dynamics of the scene Predict how the scene is going to evolve Evaluate a set of possible decisions to execute 	High-performance NN accelerator with temporal state memory	 ~1-10 W power budget 10-100 TOPS Latency is critical
Reasoning and decision-making	 Develop a reasoning for the situation and its outcomes—noncausally (i.e., the best outcome may be one that is known from past experience) Identify a course of action that improves on the determined outcomes Execute the action 	High-performance NN accelerator for decision-making Safety controller for reasoning and control	 ~1−10 W power budget −10−100 TOPS − Latency is critical (0.01−0.1 s) − Safety is critical

Type of collected data

Data sources

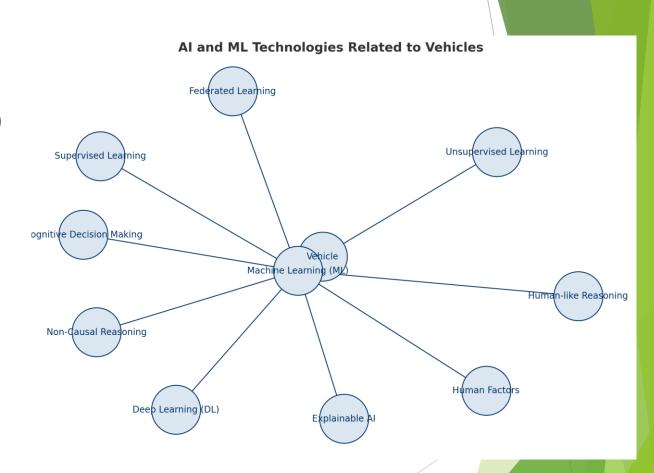
- ▶ A mobile smartphone (inside the vehicle) and/or an on-board device
- ► The vehicle itself (via an OBD-II device) (=on-board diagnostics)
- Mobile Network Operator (MNO)-related data

Indicative data


- Smartphone/Tablet and/or on-board device (ADAS)
 - MNO-related info, such as: (a) Cell-id, Radio Access Technology (RAT) currently utilized, (b) Received Signal Strength Indicator (RSSI) and/or Reference Signal Received Power (RSRP) from the serving Base Stations and/or neighbouring ones
 - Information from motion sensors, environmental sensors and position sensors, such as, accelerometers, gravity sensors, gyroscopes and rotational vector sensors, barometers, photometers, and thermometers, orientation and magnetometers sensors
 - Location information (from GPS/Galileo) such as latitude and longitude

Type of collected data

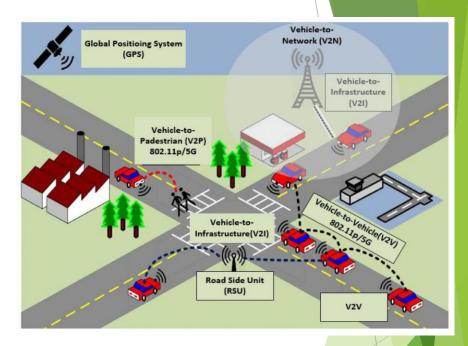
- Indicative data (continued)
 - Vehicle/OBD-II
 - Current and average speed, acceleration, throttle/boost, coolant temperature
 - Timings
 - Current and average CO2 emissions (trip, overall)
 - Current and Average consumption (trip, overall)
 - ► Tank level, etc.
 - MNO data
 - ► Location of Base Stations (i.e., GPS coordinates)
 - ► RAT supported per Base Station (GSM, UMTS, HSPA, HSPA+, 4G, 5G)


Silicon-born Al

- The adoption of silicon-born AI technologies can be substantially accelerated by making the required computing power available at the edge
 - Completely new AI applications, not available for industrial applications before
- Moore's law is the observation that the number of transistors in a dense integrated circuit doubles about every 2 years
- More heterogeneous integration enabled by "More than Moore" technologies will increase the AI functionalities, and both will enlarge the potential for industrial application of AI even further

Al enablers

- Natural Intelligence (NI)
 - Evolution of human brain
- Artificial Intelligence (AI)
 - Imitates NI


5G and beyond for transport & mobility

- Exploit 5G MNO infrastructure/data for V2V/V2I communications
 - Reduced latency
 - Increased reliability
 - Facilitation of highly automated vehicles
 - Efficient & pervasive market penetration
 - Significantly low infrastructure costs
- Applications areas and examples
 - Road: D2D communication, connected vehicles, innumerable apps in mass transport, car sharing
 - Air: BVLOS drones, logistics, taxi drones, robotic drones
 - Sea: Autonomous vessels, compliance, emissions management

Vehicular Ad-Hoc Networks (VANETs)

- VANETs allows vehicles to communicate with each other (V2V) and with road infrastructure (V2I) to enhance:
 - Safety
 - Efficiency
 - Entertainment
 - Comfort
- VANET components:
 - Road Side Units (RSU)
 - On Board Units (OBU)
 - Base Stations (MNO)

Tahir, M.N.; Leviäkangas, P.; Katz, M. Connected Vehicles: V2V and V2I Road Weather and Traffic Communication Using Cellular Technologies. Sensors 2022, 22, 1142.

Software-Defined Vehicular Networks (SD)

Applications plane

VANET-related Applications Location prediction

QoS

Security

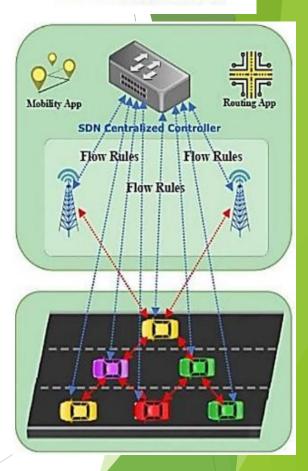
Mobility Management

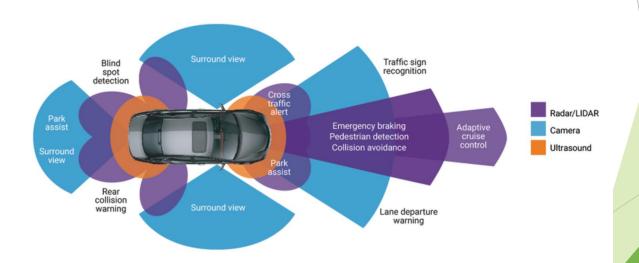
Control plane

SDN controller(s) (Core network) Rules Instalation Resources abstraction

Data plane


Forwarding devices supporting the OpenFlow protocol (Edge network)





Advanced Driver Assistance Systems (ADAS)

- Research since the '90s
 - Automate/adapt/enhance vehicle systems for safety and better driving
 - Avoid collisions and accidents by offering technologies that alert the driver
 - Avoid collisions by implementing safeguards and taking over control of the vehicle

Advanced Driver Assistance Systems with

- Reconfigurable driving styles
- Driver fatigue detection systems
- Distraction detection
- Obstacle recognition
- Lane keeping and lane departing
- Proactive emergency braking
- Remote vehicle monitoring
- Research still ongoing...

Users' acceptance & barriers

Barriers towards market adoption

Technical

- Implementation, transition, scalability, feasibility
- Cybersecurity attacks

Economical

High initial investment costs, potential job displacement

Regulatory

Laws not designed with driverless technologies in mind

Social

Data privacy concerns, over-reliance on technology, equity issues

Ethical

- When an accident is deemed by the vehicle as non-avoidable eventuality, the decision upon which course should be taken to minimize damages could be perceived as wildly controversial when damages affect lives
- Al bias?

Consumers' perspective

- The impact of AI-enabled ECAS vehicles could be enormous!
- Fundamental prerequisite for all these potential societal benefits
 - These vehicles are accepted and used by a critical mass of consumers
- Important to understand consumers' acceptance
 - Not yet 100% clear to what extent users accept automation technologies in vehicles and what the factors and determinants of user acceptance of automation are
 - Impact of automated systems on drivers' workload and situation awareness, as well as human drivers' levels of acceptance, trust and reliance on automated systems
 - Level of supervisory control and the role of the human in the case of an emergency

The way forward

- Electric-connected-autonomous-shared
- Innumerable novel services and applications
- Huge impact social inclusion
- Enable people to move, socially communicate and act easier
- Personalization
- Constitute the 2nd extension of oneself since the smartphone
- Ethical issues are still unsolved
- How close / far are we?

Many images in this presentation were created using AI tools powered by OpenAI's ChatGPT. The images are custom-generated and not sourced from third parties. © ICSA, 2024.

Thank you!