

Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health

Miguel João Xavier^{1,2}, Shaun D. Roman^{1,2,3}, R. John Aitken^{1,2,4,†}, and Brett Nixon^{1,2,†,*}

¹Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia ²Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia ³Priority Research Centre for Chemical Biology and Clinical Pharmacology, The University of Newcastle, Callaghan, NSW 2308, Australia ⁴Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia

*Reproductive Science Group, Life Sciences Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
E-mail: brett.nixon@uon.edu.au orcid.org/0000-0003-2745-8188

Submitted on September 14, 2017; resubmitted on March 19, 2019; editorial decision on April 4, 2019

TABLE OF CONTENTS

- Introduction
- Known forms of epigenetic information
- Epigenetic inheritance
- Inheritance of methylation patterns
- Inheritance of histone modifications
- Epigenetic reprogramming
- Gametic epigenetic reprogramming
- Embryonic epigenetic reprogramming
- External factors influencing epigenetic inheritance
- Inheritance of genomic information contained in telomeres
- Interaction between genetic and epigenetic modifications
- The impact of ageing on the inheritance of transgenerational information
- The impact of oxidative stress on the inheritance of transgenerational information
- Conclusion

BACKGROUND: A defining feature of sexual reproduction is the transmission of genomic information from both parents to the offspring. There is now compelling evidence that the inheritance of such genetic information is accompanied by additional epigenetic marks, or stable heritable information that is not accounted for by variations in DNA sequence. The reversible nature of epigenetic marks coupled with multiple rounds of epigenetic reprogramming that erase the majority of existing patterns have made the investigation of this phenomenon challenging. However, continual advances in molecular methods are allowing closer examination of the dynamic alterations to histone composition and DNA methylation patterns that accompany development and, in particular, how these modifications can occur in an individual's germline and be transmitted to the following generation. While the underlying mechanisms that permit this form of transgenerational inheritance remain unclear, it is increasingly apparent that a combination of genetic and epigenetic modifications plays major roles in determining the phenotypes of individuals and their offspring.

†These authors contributed equally to this work.

© The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com

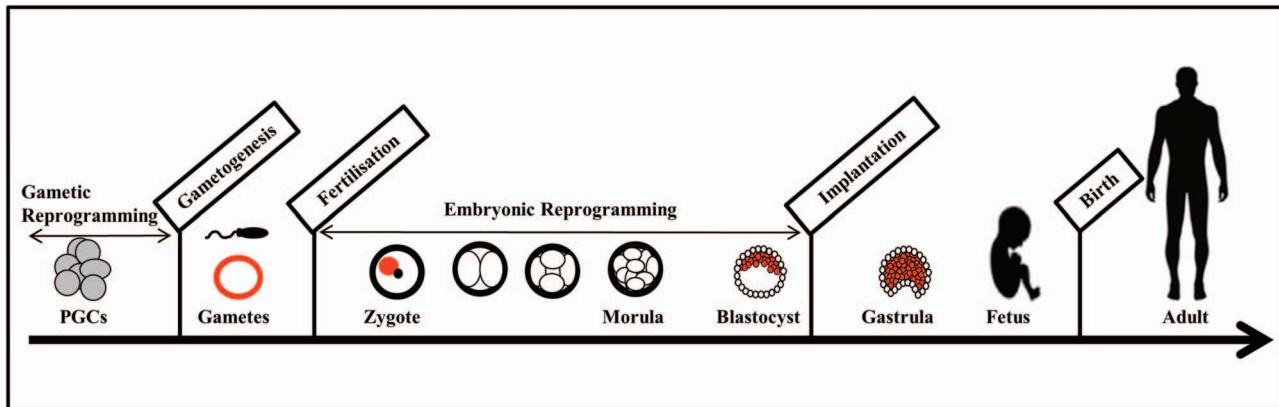
OBJECTIVE AND RATIONALE: Information pertaining to transgenerational inheritance was systematically reviewed focusing primarily on mammalian cells to the exclusion of inheritance in plants, due to inherent differences in the means by which information is transmitted between generations. The effects of environmental factors and biological processes on both epigenetic and genetic information were reviewed to determine their contribution to modulating inheritable phenotypes.

SEARCH METHODS: Articles indexed in PubMed were searched using keywords related to transgenerational inheritance, epigenetic modifications, paternal and maternal inheritable traits and environmental and biological factors influencing transgenerational modifications. We sought to clarify the role of epigenetic reprogramming events during the life cycle of mammals and provide a comprehensive review of how the genomic and epigenomic make-up of progenitors may determine the phenotype of its descendants.

OUTCOMES: We found strong evidence supporting the role of DNA methylation patterns, histone modifications and even non-protein-coding RNA in altering the epigenetic composition of individuals and producing stable epigenetic effects that were transmitted from parents to offspring, in both humans and rodent species. Multiple genomic domains and several histone modification sites were found to resist demethylation and endure genome-wide reprogramming events. Epigenetic modifications integrated into the genome of individuals were shown to modulate gene expression and activity at enhancer and promoter domains, while genetic mutations were shown to alter sequence availability for methylation and histone binding. Fundamentally, alterations to the nuclear composition of the germline in response to environmental factors, ageing, diet and toxicant exposure have the potential to become hereditably transmitted.

WIDER IMPLICATIONS: The environment influences the health and well-being of progeny by working through the germline to introduce spontaneous genetic mutations as well as a variety of epigenetic changes, including alterations in DNA methylation status and the post-translational modification of histones. In evolutionary terms, these changes create the phenotypic diversity that fuels the fires of natural selection. However, rather than being adaptive, such variation may also generate a plethora of pathological disease states ranging from dominant genetic disorders to neurological conditions, including spontaneous schizophrenia and autism.

Key words: epigenetic inheritance / epigenetic reprogramming / disease aetiology / fertilization / genomics / germline / human reproduction / neurological diseases / non-genetic inheritance / transgenerational inheritance

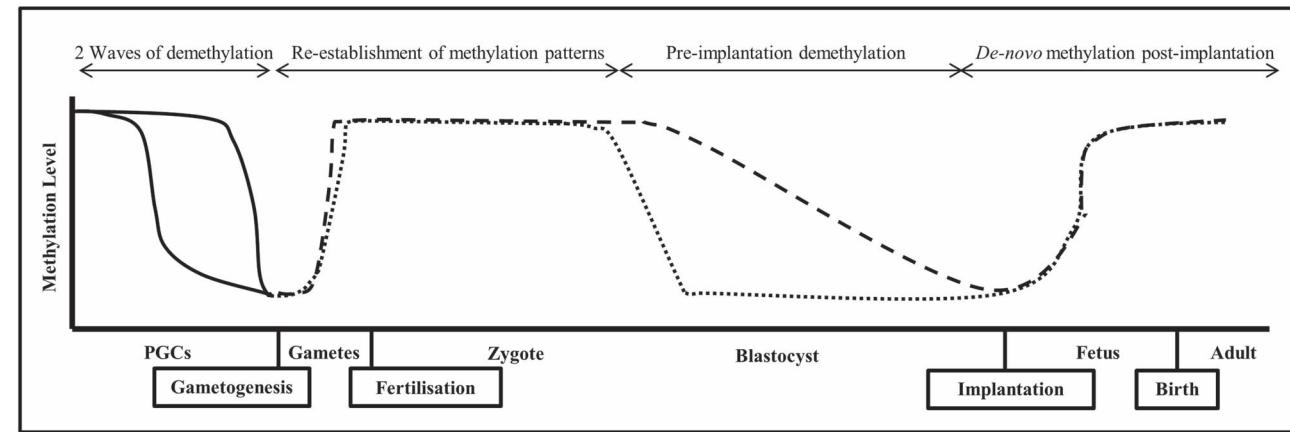

Introduction

The process of sexual reproduction involves the transmission of genetic information from both progenitors to the resulting offspring via gametes, giving rise to a fully functional multicellular eukaryotic organism from a single-celled zygote (Surani *et al.*, 2007). In multicellular eukaryotic organisms an individual is composed of two main cell types: the somatic cells, which comprise the majority of the organism but have no inheritable function and germ cells, specialized cells that differentiate into mature gametes and carry all inheritable information from one generation to the next. During fertilization the haploid gametes produced by each parent fuse and recombine their genetic information generating a diploid zygote that develops into an individual comprising the inherited information provided by its progenitors. Although widely acknowledged that genetic material inside the gametes carries information from parents to offspring, it has become increasingly evident that the DNA sequence alone is unlikely to convey the entirety of the inherited information. Instead, correlative evidence suggests that epigenetic information contained in molecular elements that regulate genome activity independently of the DNA sequence has the potential to contribute to the information transmitted from one generation to the next (Skinner *et al.*, 2010). As an important caveat however, an experimentally verified mechanism to account for this mode of inheritance in mammalian species has yet to be conclusively established (Skvortsova *et al.*, 2018).

Classical Mendelian genetics has for a long time been at the basis of our understanding of heredity, breeding and evolution. Mutations in the DNA sequence of single genes, or small clusters of genes, have been shown to generate particular biological phenotypes that are then transmitted to all subsequent generations, most often with a gene mutation that leads to the inheritance of specific disease phenotypes

(Gasparini *et al.*, 2000; Antonarakis and Beckmann, 2006; Bell *et al.*, 2011). However, cases have been reported where individuals with identified disease causing genetic mutations fail to express most or all of the symptoms expected from the associated genetic disorder (Xue *et al.*, 2012; Cooper *et al.*, 2013). Similarly, environmental factors to which both parents and offspring can be directly exposed during their lifetime do not produce consistent alterations to the genetic code and thus also fail to explain the inheritance of altered phenotypes (Jirtle and Skinner, 2007; Skinner *et al.*, 2010; Guerrero-Bosagna *et al.*, 2012). Moreover, an increasing number of inherited disease phenotypes have been reported in response to environmental exposures, which cannot be explained by genetic mutations alone, given the absence of evidence linking the disease aetiology with alterations to the gene sequence or other genetic abnormalities (Nilsson *et al.*, 2018c). Such observations provide the impetus to interrogate the molecular mechanisms by which epigenetic information is transmitted between generations, and the importance of this information for offspring development (Perez and Lehner, 2019).

Conrad Waddington first coined the term 'epigenetics' to describe the processes by which an organism interacts with the environment to produce observable phenotypic traits (Waddington, 1942) as in the inherited wing patterns observed in *Drosophila* in response to heat shock (Waddington, 1953). The definition of epigenetics has since been modified to include all changes taking place in the genome that are not associated with the DNA sequence itself (Holliday, 1994; Akhtar and Cavalli, 2005). With the discovery of genomic imprinting in the late 1980s and clarification of the essential role that DNA methylation plays in the development of mammals (Hadchouel *et al.*, 1987; Sapienza *et al.*, 1987; Sutherland *et al.*, 2000), the molecular processes responsible for epigenetic modifications started to be identified. In the ensuing decades it has been shown that epigenetic transgenerational


Figure 1 Epigenetic reprogramming cycles. During mammalian life, cells are submitted to two major genome-wide epigenetic reprogramming events. The Gametic Reprogramming event takes place in PGCs of embryos during germline cell development, as PGCs migrate to the genital ridge. PGCs experience genome-wide DNA demethylation, removal and resetting of parental imprints, histone modifications and inactive-X-chromosome reactivation. The Embryonic Reprogramming event starts immediately after fertilization and lasts until the blastocyst stage of embryo development, when cells experience DNA demethylation, the removal and resetting of parental imprints and histone modifications.

inheritance of disease and phenotypic variation is relatively common in plants, where mitotically stable epigenetic changes can be transmitted through the germline to alter genome activity independently of DNA gene sequences in the offspring (Schmitz and Ecker, 2012; Weigel and Colot, 2012). In animals, and particularly in mammals, inheritance of epigenetic changes is a much rarer event. However, variations in DNA methylation levels have been reported to impact the expression of exogenous transgenes and endogenous alleles leading to phenotypic changes, such as variation in the coat colour of mice, from one generation to the next (Morgan *et al.*, 1999; Rakyan *et al.*, 2002). Furthermore, it has been shown that epigenetic inheritance is not necessarily limited to the DNA methylation status alone, but rather encompasses a range of alternative complex molecular processes (Champroux *et al.*, 2018). In this manner, progenitors are now acknowledged to contribute more than just their DNA to the offspring.

In terms of alternative epigenetic processes, the cytoplasmic contents of the parental gametes can contribute bioactive molecules (e.g. non-coding RNAs, ncRNA; Hutcheon *et al.*, 2017), along with nutrients and hormones to the offspring, which have in turn been implicated in the regulation of their development during embryogenesis (Jodar *et al.*, 2013; Rodgers *et al.*, 2015; Conine *et al.*, 2018). Evidence from studies of humans and mice suggest that parental care during growth may also influence the development of the offspring by modulating environmental interactions (Stein and Lumey, 2000; Kaati *et al.*, 2002; Pembrey *et al.*, 2006; Mashhoodh *et al.*, 2018). The epigenetic landscape of the nuclear genome may also be indirectly influenced by the germline organelles that pass through the parental lineage to the progeny. By way of example, maternally inherited mitochondria fulfill an essential role in the provision of the intermediary metabolites necessary to generate and modify epigenetic marks in the nucleus (Stimpfel *et al.*, 2018). The recent findings that human mitochondrial DNA is methylated (Ghosh *et al.*, 2014) and that a diversity of small ncRNAs are encoded by the mouse mitochondrial genome (Larriba *et al.*, 2018) also raise the interesting possibility of more direct epigenetic cross talk between the two

genomes (Cheikhi *et al.*, 2019). Furthermore, transfer of epigenetic information involving chemical modifications is not restricted to DNA methylation but also encompasses the post-translational modification (PTM) of nuclear DNA associated proteins, with bound histones being particularly amenable to methylation, acetylation and phosphorylation (Raychaudhuri *et al.*, 2008; Godfrey *et al.*, 2011; Lavebratt *et al.*, 2012; Wang *et al.*, 2012).

The mutable nature of epigenetic marks coupled with the ability of environmental stimuli to influence epigenetic change (Waterland *et al.*, 2010; Talens *et al.*, 2012; Nilsson *et al.*, 2018c) has prevented us from fully understanding the flow of epigenetic information inheritance. In mammals, investigating transgenerational epigenetic inheritance is further hindered by two major epigenetic reprogramming events (Figs 1 and 2) that erase and replace the majority of existing epigenetic marks; one of which occurs prior to and during fetal gonadal sex determination (Lane *et al.*, 2003; Delaval *et al.*, 2007; Seisenberger *et al.*, 2012; Monk, 2015) and the second immediately after fertilization (DeBaun *et al.*, 2003; Feng *et al.*, 2010). Thus, unlike the well-documented phenomena in plant and invertebrate models, there remains active debate as to whether transgenerational epigenetic inheritance in mammals is more of an exception than the rule. Accordingly, for the purpose of this review, transgenerational methods of epigenetic inheritance in plants have been excluded due to inherent differences in the reproductive processes of both groups (Hauser *et al.*, 2011; Paszkowski and Grossniklaus, 2011; Becker and Weigel, 2012). Rather, we shall focus on the me progenitors may transmit genetic and epigenetic information to their offspring and influence their phenotypes. The interdependent relationship between genetic and epigenetic modifications will also be discussed, concentrating on how genetic alterations can affect the overall epigenetic profile of cells and epigenetic changes may, in turn, influence gene expression. Finally, we shall consider how factors such as age and oxidative stress in the germline can affect the flow of transgenerational inherited information from parent to offspring.

Figure 2 DNA methylation dynamics in human cells. Epigenetic reprogramming erases pre-existing DNA methylation patterns in PGCs in two consecutive waves of demethylation (black lines). During the final stages of gametogenesis, sex imprinting re-establishes sex-specific methylation patterns in spermatozoa (dotted line) and in oocytes (dashed line). After fertilization, paternal- and maternal-derived genomes undergo passive and active DNA methylation erasure, followed by formation of a highly demethylated blastocyst. *De-novo* DNA methylation patterns are established post-implantation and are unique to the resulting offspring.

Known forms of epigenetic information

In the mammalian genome, epigenetic information is predominantly captured in the patterns of DNA methylation, the spectrum of histone modifications and in the complement of ncRNA species (Table 1). DNA methylation is the molecular process by which a methyl group is covalently attached to cytosines in the DNA sequence (Law and Jacobsen, 2010). DNA methylation has long been associated with regulation of gene expression owing to the imposition of steric hindrance. Specifically, the protrusion of the methyl group from the DNA structure interferes with the binding of transcription factors, thus inhibiting transcriptional activity and causing gene silencing (Fig. 3; Aravin et al., 2007; Carmell et al., 2007). In most cell types DNA methylation occurs predominantly at clusters of CpG dinucleotides, known as CpG islands, which are dispersed throughout the majority of the DNA (Jones and Liang, 2009; Illingworth et al., 2010). In pluripotent cells, however, DNA methylation has also been found to occur abundantly outside of the CpG islands (Meissner et al., 2008; Hawkins et al., 2010). DNA methylation is strongly implicated in maintaining genomic stability via regulation of promoters, up to 50% of which are present in CpG islands, and repetitive DNA sequences. The repetitive DNA sequences comprise both long interspersed nuclear elements and short interspersed nuclear elements (Jones and Liang, 2009; De Carvalho et al., 2012). In most cell types, a single methyltransferase family of enzymes is responsible for the maintenance and *de novo* methylation throughout the entire genome, with DNA methyltransferase 1 (DNMT1) being the enzyme most commonly employed for imposing these epigenetic marks (Law and Jacobsen, 2010; Lyko, 2018). In the course of DNA synthesis, methyltransferase enzymes replicate the methylation marks present in the template strand in the daughter strand, thus ensuring inheritance of the correct epigenetic pattern during both mitotic and meiotic cycles of cellular division (Cedar and Bergman, 2009; Probst

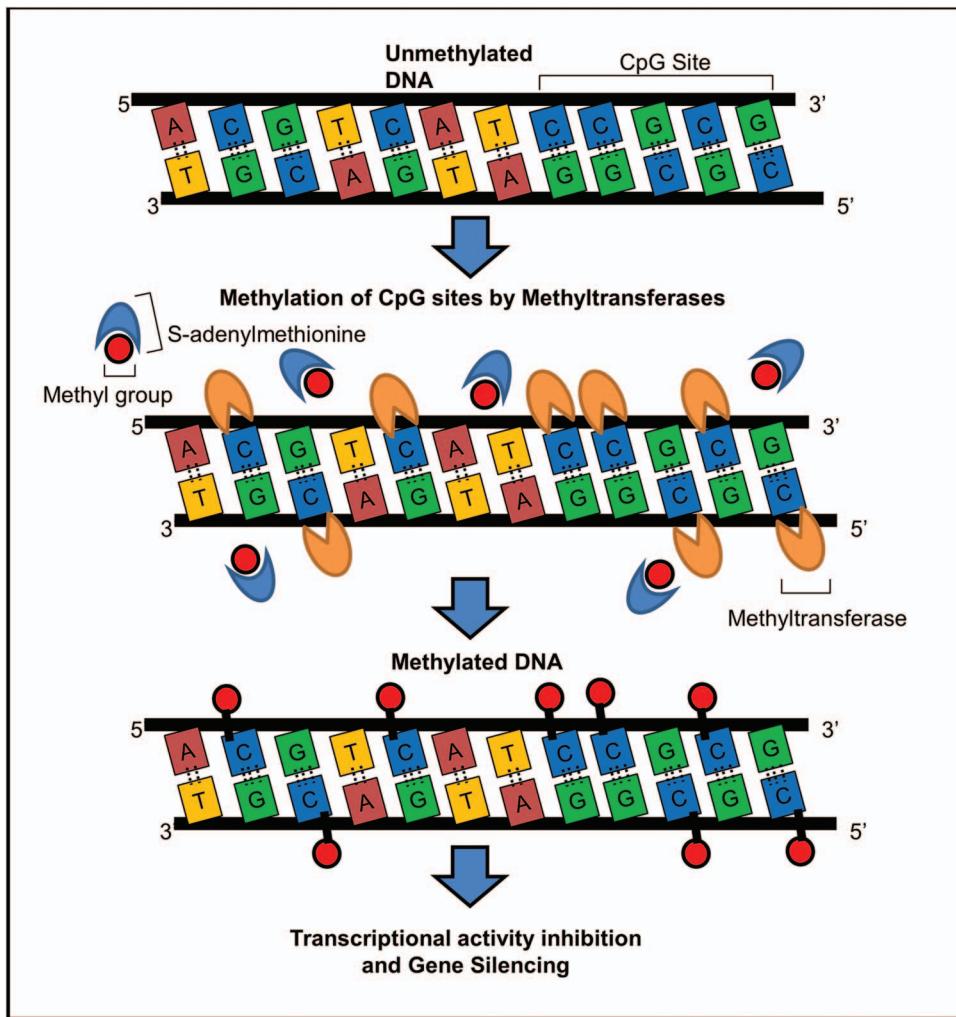
et al., 2009). Although DNA methylation is a relatively stable epigenetic process accurately replicated at each cellular division, there are situations in which this process has proven to be more dynamic, with active methylation and demethylation occurring in non-dividing cells participating in base excision-repair pathways to repair their damaged DNA (Wu and Zhang, 2010; Yamagata et al., 2012). Furthermore, profound alterations to established DNA methylation patterns are known to occur in order to re-establish pluripotency in the germline and totipotency in embryonic stem cells (Sabour and Scholer, 2012; Ficz et al., 2013; Habibi et al., 2013; Takashima et al., 2014).

Histones are the principal protein component conferring dynamism and fluidity to the chromatin structure, packaging the DNA and acting as an important mechanism for regulating gene expression by determining which DNA regions remain accessible to the cell's gene regulation and transcriptional machinery (Weintraub and Groudine, 1976; Narlikar et al., 2002; Felsenfeld and Groudine, 2003). Histones also control the activity of regulatory elements within the DNA sequence and may influence the expression of specific cellular phenotypes (Schones and Zhao, 2008; Margueron and Reinberg, 2010). PTM of the primary histone structure can occur via methylation, acetylation, phosphorylation and sumoylation of specific residues (El Kennani et al., 2018). Each of these modifications can, in turn, modulate chromatin folding (Shogren-Knaak et al., 2006; Fierz et al., 2011) and influence the binding of regulatory proteins (Patel and Wang, 2013; Zentner and Henikoff, 2013). Similarly, the exchange of histones with protamines during differentiation of the male germline has a profound effect on chromatin structure and gene expression (Zhou et al., 2011). Histone epigenetic modifications go beyond the direct interaction between histones and the DNA sequence since heterochromatin proteins may bind to already repressively modified histones to indirectly constrict the chromatin structure and fully restrict access to large sections of the genome by transcription-activating proteins (Ebert et al., 2006).

Table 1 Common epigenetic modifications and associated effects on the mammalian genome.

Epigenetic modifications	Effect on genome function
DNA methylation	Methylation at promoter sites associated with gene silencing. Methylation in gene region associated with regulation of gene activity.
Histone methylation	Methylation of amino acid residues in histone associated with both transcriptional repression and activation, dependent on residue.
Histone acetylation	Acetylation increases access to DNA for transcription. Allows the genome-wide reprogramming in sperm protamination.
Histone phosphorylation	Phosphorylation of histones associated with chromatin compaction. Regulates chromatin structure and chromosome condensation during cell division.
Histone sumoylation	Small ubiquitin-related modifier (SUMO) proteins bind to histones. Associated with transcription activation and gene silencing.
Histone variants	Histone variants, e.g. H2A.Z, CENP-A, H2AX perform various specialized functions including DNA repair, gene regulation and centromere function.
Small non-coding RNAs	Micro RNAs and PIWI-interacting RNA (piRNAs) affect transcriptional repression and activation, and translational repression.
Long non-coding RNAs	Suggested to have high variety of functions, known to regulate large-scale transcriptional repression in imprinting.

In addition to DNA and histone modifications, several classes of RNA have been implicated in epigenetic inheritance in multiple organisms, including sperm-borne and maternal stores of mRNA and long ncRNA as well as siRNA, PIWI-interacting RNA (piRNA) and micro RNA (miRNA); all of which form part of the RNA interference (RNAi) pathway that regulates gene expression, translation and silencing (Taft *et al.*, 2010; Gapp and Bohacek, 2018; Trigg *et al.*, 2019). The epigenetic effects resulting from the inheritance of ncRNA remain to be fully resolved in mammals. However, recent studies have shown that ncRNAs can influence the phenotype of individuals in a similar manner to that of the more widely studied DNA and histone modifications, owing to their ability to promote activation or repression at transcription sites upon base-complementation pairing with the genetic sequence (Teixeira *et al.*, 2009; Heneghan *et al.*, 2010; Taft *et al.*, 2010). The epigenetic modification of the mouse *Kit* gene remains the best known example in mammals, where the wild-type progeny of *Kit* heterozygous parents display the modified *Kit* phenotype in the absence of the mutant allele for multiple consecutive generations (Rassoulzadegan *et al.*, 2006). The observed effect has been attributed to the inheritance of *Kit*-specific miRNAs (Rassoulzadegan *et al.*, 2006) and, although the precise molecular basis for this form of epigenetic transfer is still not fully understood, methyltransferase DNMT2 is known to be involved (Kiani *et al.*, 2013).

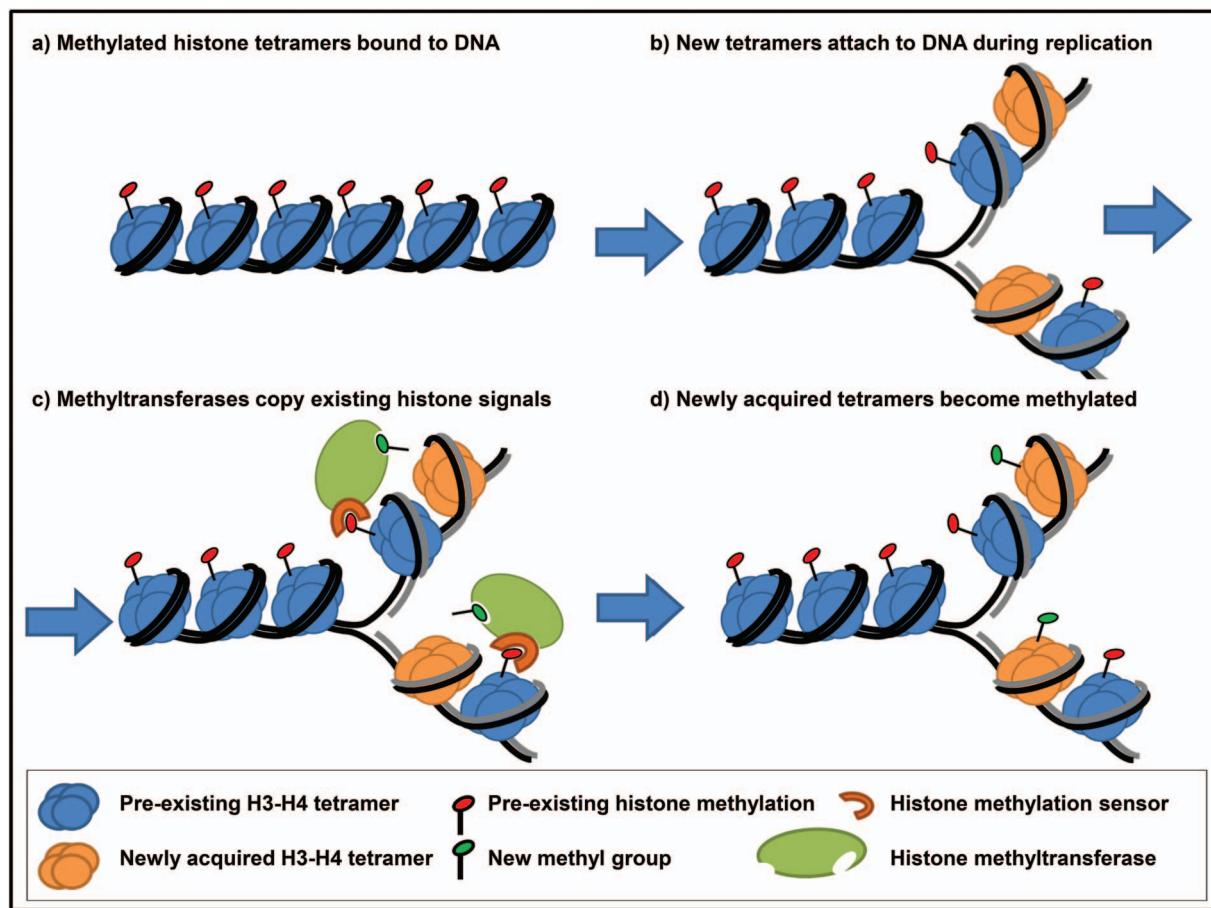

Epigenetic inheritance

The effects of the epigenetic information housed within the cells of an individual can exert influence throughout its entire lifespan, with effects ranging from provision of cellular identity and regulation of gene expression to promoting differentiation into different cell types and the manifestation of unique phenotypes. Although the cellular epigenetic profile remains relatively stable overtime, several regions of the genome actively respond to internal cellular processes and environmental forces, leading to alteration and adjustment of existing epigenetic marks (Peaston and Whitelaw, 2006; Zentner and Henikoff, 2013). The specific loci so affected are governed by nucleosome dynamics, reflecting a complex interplay of histone composition,

histone PTMs and nucleosome occupancy and positioning within chromatin (Lai and Pugh, 2017). As with genetic mutations, most spontaneous epigenetic modifications have either a neutral or deleterious effect on the individual and may impair normal cellular processes before being transmitted to the next generation. The few potential adaptive epigenetic modifications that may respond advantageously to environmental factors would still need to be successfully transmitted via the gametes to the offspring to impact on future generations by enhancing reproductive success. Nevertheless, as we discuss below, the inheritance of phenotypes not explained by Mendelian genetics has been documented in mammals (Meyer *et al.*, 2009; Schmitz and Ecker, 2012; Weigel and Colot, 2012; Docherty *et al.*, 2014), suggesting that epigenetic marks have the potential to be transmitted from parents to offspring via the gametes (Sharma, 2012; Moore and Stanier, 2013). Consistent with this model, insights from recent studies suggest DNA methylation is not erased and re-established with equivalent efficiency across the genome, meaning a previously underappreciated portion of the mammalian genome may actually escape this form of reprogramming and thereby contribute to epigenetic inheritance (Skvortsova *et al.*, 2018).

Inheritance of methylation patterns

Pioneering studies investigating global DNA methylation patterns in mammals revealed that methylation levels were consistently lower in embryonic cells than in the mature gametes or the zygote prior to implantation (Monk *et al.*, 1987; Kafri *et al.*, 1993; Rouger *et al.*, 1998; Mayer *et al.*, 2000; Oswald *et al.*, 2000). Subsequent work revealed that after this key developmental phase, methylation rises to levels similar to those found in somatic cells, thus establishing a new methylation pattern during embryogenesis that is essential for normal development (Moore and Reik, 1996; Rivera and Ross, 2013). These findings led to the proposal that epigenetic information could not be inheritably transmitted, because any marks carried by the gametes or early embryo


Figure 3 DNA methylation caused by DNA methyltransferases attaching methyl groups to cytosine nucleotides. Methylation at CpG sites alters the DNA structure and interferes with transcription factors, which leads to inhibition of transcriptional activity and gene silencing.

would be subject to erasure and replacement with a new methylation pattern following embryonic implantation. Additionally, epigenetic reprogramming and imprinting events were found to take place in the primordial germ cells (PGCs) of the developing embryo of multiple mammalian species (Lees-Murdock and Walsh, 2008), thus further restricting the potential for inheritance of parental DNA methylation patterns.

Notwithstanding these multiple reprogramming events, numerous studies have documented the influence of non-genetic factors on the phenotype of offspring due to inherited epigenetic modifications that resist erasure and replacement (Drake *et al.*, 2005; Goldberg *et al.*, 2007; Jirtle and Skinner, 2007; Sasaki and Matsui, 2008; Ding *et al.*, 2012; Fullston *et al.*, 2012; Fig. 2). Indeed, not only has DNA methylation been shown to be incompletely erased (Kearns *et al.*, 2000; Sutherland *et al.*, 2000), but also several genomic regions have been found that consistently resist demethylation in PGCs (Seisenberger *et al.*, 2012) and in embryonic cells (Weaver *et al.*, 2009; Rivera and Ross, 2013). On the weight of this evidence it is now apparent

that reprogramming events are highly regulated nuclear processes that ensure that most epigenetic modifications accumulated during a parent's lifetime are detected and corrected to minimize detrimental effects to the offspring (Reik, 2007; Faulk and Dolinoy, 2011). Illustrating the importance of these events, it is known that alterations to established DNA methylation patterns, such as global hypomethylation, are commonly associated with the development of cancer due to abnormal gene expression, chromosomal instability, reactivation of retrotransposons and loss of imprinting (Wilson *et al.*, 2007; Fleming *et al.*, 2008). Similarly, hypermethylation at specific sites inducing tumour suppressor genes has also been correlated with tumour development (Fraga *et al.*, 2007).

In humans, hypermethylation of the promoter regions regulating two tumour suppressor mismatch repair genes, *MLH1* and *MSH2*, has been associated with hereditary non-polyposis colorectal cancer (Chan *et al.*, 2006; Hitchins *et al.*, 2007). The abnormal methylation status at these sites, particularly in the promoter region of *MLH1*, has been found to reduce or impair gene expression and, in time,

Figure 4 Model of histone methylation inheritance. Diagram displaying conservative histone segregation and histone methylation-copying during DNA replication. Inherited H3-H4 tetramers (only half the nucleosome octamer is depicted, histones H2A and H2B are not shown for clarity purposes) are transferred to daughter DNA strands where methylation sensors recognize histone methylation patterns in neighbouring histones, and coupled methyltransferases copy the methylation signal onto newly acquired tetramers.

trigger microsatellite instability in the germline of individuals who possess a single functional allele of these genes (Suter *et al.*, 2004; Hitchins *et al.*, 2007). *MLH1* hypermethylation has been found to be established predominantly during oogenesis and therefore inherited via the maternal line (Fleming *et al.*, 2008). Inheritance of altered DNA methylation levels and gene expression has also been found with less severe consequences in other mammalian species. In isogenic agouti viable yellow (A^{vy}) and axin-fused ($Axin^{fu}$) mice, small variations in DNA methylation induce a variety of phenotypes despite their similar genetic identity (Rakyan *et al.*, 2002). Changes to the methylation status of the intra-cisternal A particle long terminal repeat, a retrotransposon located upstream of the coding sequence of the A^{vy} gene and within intron 6 of $Axin^{fu}$, cause the mice to display yellow fur, early onset obesity, diabetes, increased tumour susceptibility and a kinked tail phenotype due to altered protein expression (Duhl *et al.*, 1994; Morgan *et al.*, 1999; Rakyan *et al.*, 2003). In this situation, different phenotypes are transmitted via the paternal gametes of the A^{vy} mice and from both the paternal and maternal lineage for $Axin^{fu}$ (Morgan *et al.*, 1999; Rakyan *et al.*, 2003; Blewitt *et al.*, 2006).

Inheritance of histone modifications

Transmissible epigenetic modifications to histones were first detected in *Caenorhabditis elegans*, where alterations to the methylation status of histone H3 lysine 4 (H3K4) in the parents were passed down to the offspring to affect changes in their fertility and longevity (Katz *et al.*, 2009; Greer *et al.*, 2011). In humans and mice, methylation changes to H3K4 and to histone H3 lysine 27 (H3K27) in the paternal germline have been found to impact the overall chromatin structure in the gametes and affect promoter regions of genes essential for embryonic development (Hammoud *et al.*, 2009; Brykczynska *et al.*, 2010). Histone modifications also encompass the replacement of core histones with histone variants, such as H3.3, which can be subjected to unique epigenetic modification and both direct the remodelling of sperm chromatin and influence patterns of gene expression in the embryo. Illustrative of this phenomenon, abnormal histone replacement in the sperm cells of mice has been linked to paternal chromosome loss and increased risk of early embryonic death arising from genome instability

that could not be countered by the fertilized oocyte (Chong *et al.*, 2007).

As with DNA methylation, histone modifications are subjected to multiple epigenetic reprogramming events that erase histone methylation marks and exchange the histones attached to the DNA (Hajkova *et al.*, 2008). Initially, the occurrence of chromatin repackaging in maturing spermatozoa was thought to remove all histones and subsequently replace them with protamines (Ward and Coffey, 1991). However, it has since been shown that approximately 1–2% and 4–15% of the nuclear genome in the spermatozoa of mice and humans, respectively, is not repackaged in this manner and that several histones and histone methylation marks endure the reprogramming events (Hammond *et al.*, 2009; Brykczynska *et al.*, 2010). For instance, histone methylation marks, such as H3K27me3 (trimethylation of H3K4), have been found to withstand reprogramming in mature human spermatozoa and influence genes capable of histone binding at the transcriptional start sites, thereby repressing gene expression during gametogenesis and early embryogenesis (Hansen *et al.*, 2008; Brykczynska *et al.*, 2010). Such findings suggest that a few epigenetic modifications may enable transcriptional state memory across generations (Lim and Brunet, 2013).

Despite the gathering evidence supporting the heritability of histone modifications, as a whole, the process of transmitting histone changes from one generation to the next is poorly understood (Skvortsova *et al.*, 2018). The system for transmitting epigenetic information via histones is imprecise and tolerates a certain degree of variation in histone structure (Xu *et al.*, 2012; Huang *et al.*, 2013). Not only is histone methylation not required to exist in a symmetrical manner within the nucleosome but also the corresponding residues on the two copies of the same histone within the nucleosome can be differentially methylated, functioning as 'silent' modifications (Chen *et al.*, 2011). Furthermore, the observed conservative segregation of H3-H4 tetramers indicate that epigenetic inheritance does not require strict methylation-copying events when coupled with copying of epigenetic patterns from neighbouring pre-existing histones (Fig. 4; Hansen *et al.*, 2008; Margueron and Reinberg, 2010; Xu *et al.*, 2010). Nevertheless, the histone methyltransferases can amplify pre-existing histone modifications and provide a measure of epigenetic control over the assembly of heterochromatin (Nakayama and Takami, 2001; Margueron and Reinberg, 2010) that can potentially be inherited. Notably, in oocytes, histone modifications and DNA methylation act in opposition, such that DNA methylation prevents histone methylation (Eckersley-Maslin *et al.*, 2018). Despite this phenomenon, large histone H3K4me3 domains have been detected in mouse oocytes, where they are implicated in modulating the maternal-to-zygotic transition (Dahl *et al.*, 2016; Zhang *et al.*, 2016; Hanna *et al.*, 2018).

Epigenetic reprogramming

To mitigate the adverse effects that can arise from epigenetic modifications, two reprogramming regulatory events occur during gametogenesis and immediately after fertilization during the early stages of embryogenesis (Fig. 1). These combined processes ensure that most epigenetic alterations accumulated during the adult life of the parents are detected and corrected in order to minimize detrimental effects in

the offspring (Reik, 2007; Faulk and Dolinoy, 2011). In somatic cells, mitosis gives rise to more somatic cells containing identical genetic information and a stable epigenetic configuration to ensure that a correct pattern of gene expression is maintained in daughter cells. Nevertheless, the epigenetic marks in these cells have no relevance to the pattern of information inherited by the offspring. Only the epigenetic patterns retained in the mature gametes have the potential to be passed down to the offspring and influence their phenotype (Daxinger and Whitelaw, 2012). However, the heritability of epigenetic modifications is highly restricted by the two major epigenetic reprogramming events in the mammalian life cycle (Gold *et al.*, 2018).

The role of epigenetic changes in the inheritance of non-genetic information is further complicated by the concepts of 'intergenerational' and 'transgenerational' inheritance (Perez and Lehner, 2019). Intergenerational epigenetic inheritance is a term used to define epigenetic modifications that are found in the adult progenitor, the first or the second generation of offspring in response to direct exposure to environmental factors inducing changes in the epigenetic profile of the adult, the fetus or PGCs. Conversely, the term transgenerational inheritance is only used to describe epigenetic modifications that are able to persist into the third, or later generations, in the absence of direct exposure to the factor that initiated the change (Daxinger and Whitelaw, 2012; Heard and Martienssen, 2014; Martos *et al.*, 2015; Skinner *et al.*, 2015).

To fully understand the role of epigenetic inheritance in mammals, the processes involved in the resetting of epigenetic marks need to be further explored. The two major epigenetic reprogramming events characterizing the mammalian life cycle have already been summarized in Fig. 1 and comprise, first, the reprogramming of PGCs to achieve a pluripotent state and, second, the post-fertilization reprogramming of the embryo to ensure a pattern of gene expression supportive of normal cell differentiation during development (Reik, 2007; Lange and Schneider, 2010).

Gametic epigenetic reprogramming

The genome-wide reprogramming event that occurs in the PGC pool proceeds through multiple stages in response to the appropriate cellular signals (Cowley and Oakey, 2012; Hackett and Surani, 2013; Heard and Martienssen, 2014; Martos *et al.*, 2015; Hill *et al.*, 2018). During their first phase of development, germ cells must undergo specification in order to separate them from the surrounding soma. The PGCs then migrate to the genital ridge whereupon epigenetic reprogramming and sex-specific differentiation occurs to return cells to a pluripotent state before they undergo their first meiotic division (Fig. 2). In mice, the timing of the epigenetic reprogramming occurs at slightly different stages due to specificities inherent in the differentiation pathways of oocytes and spermatozoa (Smallwood *et al.*, 2011; Cowley and Oakey, 2012). Nevertheless, the reprogramming of both cell types involves extensive DNA demethylation. During this process, the majority of the commonly methylated sites are erased from all chromosomes, particularly those sites silencing the X chromosome. However, a small number of specific genomic areas, including the sub-telomeric and retrotransposon regions, resist demethylation and thus retain their epigenetic markers (Hajkova *et al.*, 2002; Franklin *et al.*, 2010; Popp

et al., 2010; Schmitz *et al.*, 2011; Guibert *et al.*, 2012). It has been proposed that the resistance to demethylation that exists in the sub-telomeric regions is associated with the maintenance of appropriate telomere length and function while PGCs regain pluripotency (Jezek and Green, 2019). Accordingly, hypomethylation at these regions has been correlated with dysregulation of telomerase activity and cancerous phenotypes (Yehezkel *et al.*, 2011; Wang *et al.*, 2013; Zhang *et al.*, 2014). Similarly, demethylation of retrotransposon regions that are normally subjected to stringent DNA-methylation-mediated repression has been linked to increased transcriptional activation, higher rates of retrotransposon insertion and a rise in recombination events among different unmethylated repeat regions, each of which exerts negative impacts on normal genomic activity (Moazed, 2011; Guibert *et al.*, 2012). This initial round of epigenetic reprogramming terminates with DNA methylation in PGCs returning to similar patterns, and overall levels, to those found in somatic cells (Sasaki and Matsui, 2008).

This PGC genome-wide DNA demethylation event has been associated with triggering complementary epigenetic reprogramming events, including the demethylation of epigenetic marks on histones and the exchange of histones with non-canonical histone variants (Hajkova *et al.*, 2002; Lee *et al.*, 2002). These forms of epigenetic reprogramming, combined with those occurring in the DNA, are thought to facilitate the return of the PGC chromatin signature to a state of pluripotency and thus permit specific gene expression to occur during germ cell development. Concurrently, such changes enable the correction of epigenetic errors that may have accumulated during an organism's lifetime (Hajkova *et al.*, 2008). In maturing male gametes, an additional epigenetic reprogramming event occurs in late spermatogenesis that involves the replacement of the majority of histones previously bound to DNA with protamines and other histone variant proteins. This major remodelling event serves to impose further condensation of the chromatin structure leading to tight packaging of the paternal genome held inside the nucleus of maturing spermatozoa (Ward and Coffey, 1991; Balhorn *et al.*, 2000; Braun, 2001; Hajkova *et al.*, 2008). Protamines, and most other male-inherited histone variants, in themselves carry no heritable epigenetic information since most are replaced by oocyte-specific histone variants immediately after fertilization (Dworkin-Rastl *et al.*, 1994; Teranishi *et al.*, 2004). However, a small number of male-inherited histones are retained in the zygote where they may be capable of transmitting epigenetic information to the developing embryo (Balhorn, 2007; Gaucher *et al.*, 2010; Kota and Feil, 2010).

Embryonic epigenetic reprogramming

The second major phase of genome-wide reprogramming occurs during early embryonic development, commencing immediately after fertilization and persisting until blastocyst formation (Kono *et al.*, 2004; Hirasawa *et al.*, 2008; Kobayashi *et al.*, 2012; Smith *et al.*, 2012). During this key developmental window, the embryonic cells undergo global DNA demethylation and histone replacement (Labosky *et al.*, 1994; Tada *et al.*, 1998; Reik, 2007; Shin *et al.*, 2010). These reprogramming events are essential for the acquisition of totipotency and generating a population of cells that are capable of indefinite proliferation and self-

renewal during this early stage of development (Matsui *et al.*, 1992; Durcova-Hills *et al.*, 2001).

The global DNA demethylation in embryos differs significantly from that of the PGC demethylation process described above, with embryos having to initially process the two unique genomes derived from the male and the female gametes, each of which possesses a different chromatin structure and organization. Furthermore, embryonic reprogramming is not as comprehensive as in PGCs, since it allows retention of DNA methylation at imprinted loci that propagate a few specific maternally derived promoters and transposable elements (Borgel *et al.*, 2010). Immediately after zygote formation, the highly methylated paternal genome is subjected to rapid and full demethylation before the first mitotic division to ensure proper chromosome pairing (Mayer *et al.*, 2000; Okae *et al.*, 2014; Smith *et al.*, 2014). This is an active process involving a number of key events, including but not limited to the ten–eleven translocation methylcytosine dioxygenase (TET3) catalysed oxidation of 5-methyl-cytosine (Eckersley-Maslin *et al.*, 2018). During the restructuring of the paternal genome, protamines and paternally derived histones are replaced by histone variants arising from the maternal stores within the oocyte (Yang *et al.*, 2015), thus returning the genome to a less tightly bound and compacted chromatin configuration (Dworkin-Rastl *et al.*, 1994; Teranishi *et al.*, 2004). In contrast, the chromatin structure of the maternal genome remains relatively stable with minimal modifications occurring to the histones bound to the maternal DNA (Santos *et al.*, 2002; van der Heijden *et al.*, 2005). Indeed, the less methylated maternal genome only undergoes passive demethylation as a result of DNA replication, a process that leaves imprinted loci intact (Santos *et al.*, 2002; Borgel *et al.*, 2010). This phenomenon is at least partly attributed to the protection of the maternal genome from active demethylation by the presence of the developmental pluripotency-associated 3 protein (Santos *et al.*, 2005; Nakamura *et al.*, 2012; Peat *et al.*, 2014).

These combined reprogramming events culminate in a globally demethylated, fused genome inside the cells of the pre-implantation embryo (Reik, 2007). In pre-implantation embryonic cells, the reprogramming event continues, rapidly remodelling the heterochromatin structure with modification of epigenetic marks in histones being necessary to accommodate the changes in gene regulation and expression that characterize this highly dynamic developmental period (Burton and Torres-Padilla, 2010). Following implantation, genome-wide *de novo* methylation takes place to establish the methylation pattern of the developing embryo (Smith *et al.*, 2012). The maintenance of genomic imprints through the reprogramming phase has been proposed to underpin the differential behaviour of the paternal and maternal genomes post-fertilization (Reik and Walter, 2001; Hackett and Surani, 2013).

External factors influencing epigenetic inheritance

The reprogramming events that take place in PGCs and early embryonic cells comprise the most intense period of epigenetic change experienced by the (epi)genome during the mammalian life cycle (Skvortsova *et al.*, 2018). Any epigenetic modifications that endure both reprogramming events become integrated into the epigenetic pattern and thus persist throughout the life of the individual and may

be passed down to future generations (Heijmans *et al.*, 2008; Ng *et al.*, 2010). Thus, errors that arise during replication or in response to external environmental factors that fail to be corrected by normal epigenetic maintenance processes or reprogramming events can lead to long-term consequences affecting the phenotype and survival of an individual (Hitchins, 2010).

Multiple environmental factors have been found to influence the formation and maintenance of specific epigenetic patterns in both somatic and germline cells (Nilsson *et al.*, 2018a,b,c). The detrimental effects of environmental factors, such as diet composition or exposure to trace elements, have been shown to alter the native DNA methylation patterns and inflict histone modifications during gamete production and early embryonic development in mice (Waalkes *et al.*, 2004; Delage and Dashwood, 2008). However, exposure to environmental factors occurs primarily in somatic cells, which are not capable of transmitting the altered epigenetic pattern. Only modifications induced at an early developmental stage or in PGCs have the potential to become inheritable. These environmentally induced modifications have severe consequences, often precipitating the early onset of disease in affected individuals (Godfrey *et al.*, 2007).

In mammals, the diet of progenitors has been found to impact the inherited epigenetic information transmitted to the next generation. For instance, in rat models held under controlled dietary regimens, the offspring of males fed a chronic high-fat diet suffered from an early onset of impaired insulin secretion and glucose tolerance (Ng *et al.*, 2010). While the genomic composition of these rats was identical to the offspring conceived from control fathers not subjected to the high-fat diet, the overall gene expression profile proved to be significantly different. Indeed, among a large number of differentially expressed genes, interleukin 13 (*Il13ra2*) was the most dramatically affected, being characterized by hypomethylation in both the fathers consuming the high-fat diet fathers as well as their offspring. Since the offspring themselves were fed a control diet, such changes appear indicative of an epigenetic form of inheritance (Ng *et al.*, 2010). Similar alterations to insulin and glucose metabolism were reported in mouse models exposed to dietary interventions. Indeed, both of these metabolic parameters were negatively impacted in the offspring of fathers fed more frequently than controls, a phenotype that persisted in the two subsequent generations, again suggestive of transgenerational epigenetic inheritance transmitted via the male germline (Pentinat *et al.*, 2010). In humans, the transgenerational effect of diet on the epigenome has been linked to poor nutrition and reduced food availability.

In a classic example, the babies of Dutch women subjected to severe food restriction during pregnancy at the time of the Second World War were reported as having lower than normal weight at birth, a phenomenon that persisted in the following generation despite no dietary restrictions being imposed during conception or fetal growth (Roseboom *et al.*, 2006). Regrettably, the mechanisms underpinning these observations could not be fully investigated at the time owing to a paucity of techniques to analyse the epigenome. Nevertheless, more recent studies in humans have linked prenatal famine to alterations in the offspring, particularly to changes in the DNA methylation of imprinted genes, [such as insulin-like growth factor 2 (*Igf2*), insulin (*Ins*), guanine nucleotide binding protein α -stimulating (*Gnas*)] and in loci involved in growth and metabolic processes, including *Il10*, leptin (*Lep*) and ATP binding cassette A1 (*Abca1*; Heijmans *et al.*, 2008; Tobi *et al.*, 2009). Conversely, other studies have reported minimal alterations to

the DNA methylation pattern of offspring of mothers under caloric restriction diet or fathers on low-protein diets (Jimenez-Chillaron *et al.*, 2009; Carone *et al.*, 2010). Similarly, there are reports of exposure to famine during gestation not eliciting significant alterations in DNA methylation profiles (Heijmans *et al.*, 2008). The transgenerational effects of diet have also been linked to the nutritional habits and diet composition of individuals. Human populations have been shown to be unintentionally exposing themselves to toxicants such as by ingesting food products containing acrylamide, a by-product in many carbohydrate-rich foods prepared at high temperatures (Dybing and Sanner, 2003; Katen and Roman, 2015). Acrylamide's principal metabolic product, glycidamide, induces the most severe genotoxic effects (Butterworth *et al.*, 1992) and results in the alkylation of protamines, DNA strand breaks via adduct formation and chromosomal aberrations (Von Tungeln *et al.*, 2009, 2012; Hansen *et al.*, 2010). The male germline of rodents has been shown to be particularly susceptible to acrylamide, with multiple studies reporting both an increase in glycidamide adducts and DNA damage in spermatocytes (Shelby *et al.*, 1986; Segal and Generoso, 1990; Bjorge *et al.*, 1996; Nixon *et al.*, 2012; Katen *et al.*, 2016). Furthermore, breeding experiments have revealed a link between reproductive toxicity and male exposure to high doses of acrylamide (Sakamoto and Hashimoto, 1986; Shelby *et al.*, 1986; Zenick *et al.*, 1986), as well as demonstrating that lower doses produce heritable translocations, reduced fertility and increased germline DNA damage (Katen *et al.*, 2016) and mutational load in their offspring (Russel *et al.*, 1991; Ehling and Neuhäuser-Klaus, 1992). These data suggest that environmental exposure must affect both the parental germline and endure the pre-implantation embryonic reprogramming event in order to be transgenerationally inherited.

Aside from diet, a variety of additional environmental factors have been found to impact epigenetic inheritance in mammals. For instance, exposure of rats to the anti-androgen endocrine disrupter vinclozolin was initially shown to trigger alterations to the DNA methylation pattern in the testes of adult males leading to the subsequent disruption of DNA methylation profiles in spermatozoa for the next two generations of unexposed males (Anway *et al.*, 2006a,b). Furthermore, compromised gonad development and spermatogenesis in the offspring of exposed fathers or grandfathers was correlated with the inheritance of alterations to the DNA methylation status at several promoter sites in spermatozoa (Guerrero-Bosagna *et al.*, 2010). However, despite multiple reports describing the persistence of the compromised phenotype for four generations in male rats (Anway *et al.*, 2006a,b) and three generations in female rats (Nilsson *et al.*, 2008) after initial exposure to vinclozolin, the existence of transgenerational epigenetic inheritance in mammals has been contested by studies that reported vinclozolin failed to induce any transgenerational abnormalities in the DNA methylation profile of exposed individuals or of subsequent generations (Schneider *et al.*, 2008; Inawaka *et al.*, 2009). Nevertheless, exposure to alternative toxic compounds, such as bisphenol A, during the early stages of embryonic development has been shown to provoke widespread alterations to the epigenome of both somatic and germline cells of exposed individuals (Chianese *et al.*, 2018), epigenetic changes that can be integrated and perpetuated via epigenetic transgenerational inheritance (Salian *et al.*, 2009; Skinner *et al.*, 2010).

Although there is now mounting evidence supporting transgenerational epigenetic inheritance in mammals in response to environmental

factors, such as diet and exposure to toxic chemicals, the extent to which such modifications of an individual's epigenetic profile impacts the phenotype of their offspring is still poorly understood. The impetus to improve our understanding of the mechanisms regulating the germline epigenome and its impact on inherited traits and disease susceptibility is given further credence by the contemporary practice of administering pharmaceuticals that directly target epigenetic modifying proteins. Notwithstanding the considerable promise of these novel therapeutic interventions to combat diseases such as cancer, their potential to elicit off-target effects on the epigenetic information contained in a patients' gametes remains poorly understood, as does the possibility that they could contribute to lasting effects on subsequent offspring (Jarred *et al.*, 2018; Western, 2018).

Inheritance of genomic information contained in telomeres

The information contained in coding genes is generally considered the main form of heritable information. However, as described above, epigenetic information contained in DNA methylation, histone PTMs and ncRNA are also able to modulate and influence the inherited phenotype of the offspring. Furthermore, it is now known that genomic information may be carried in the non-protein-coding repeat regions of the genome that form telomeres, promoters and/or enhancer regions (Table II). Mammalian telomeres are composed of non-coding DNA repeats that form nucleoprotein complexes and are located at the extremities of chromosomes. These structures serve the dual purpose of protecting chromosome ends from degradation as well as preventing end-to-end fusions (Blackburn, 2005; Palm and de Lange, 2008). In humans, telomere length at the extremities of specific paternal chromosomes has been shown to strongly influence the length of the equivalent telomeric regions in their offspring's chromosomes (Graakjaer *et al.*, 2006). In accounting for these findings, paternal and X chromosome-linked inheritance have been proposed as the main mechanism(s) influencing telomere length in offspring (Nordfjall *et al.*, 2005; Njajou *et al.*, 2007); although genetic variation at specific genomic loci has also been found to strongly determine the size of telomeres (Vasa-Nicotera *et al.*, 2005; Andrew *et al.*, 2006). Furthermore, the inheritance of this genomic information via the paternal side has been linked to increased activity of telomerase in the testes, where the enzyme functions to extend the telomere length of chromosomes carried by developing spermatozoa (Zalenskaya and Zalensky, 2002; Baird *et al.*, 2006). In contrast, no evidence has yet been reported supporting an inherited maternal effect on telomere length, which is consistent with the fact that telomere length remains constant in oocytes (Kimura *et al.*, 2008; Arbeev *et al.*, 2011).

Interaction between genetic and epigenetic modifications

The inheritance of modified genetic/epigenetic information, such as altered DNA methylation patterns, histone modifications, coding gene mutations and/or shorter telomere lengths, is commonly associated with disease states and metabolic syndromes (Godfrey *et al.*, 2007; Ng

et al., 2010; Pentinat *et al.*, 2010; Willeit *et al.*, 2010; Xue *et al.*, 2012). Although epigenetic and genetic alterations were traditionally considered as two distinct mechanisms, more recent work has provided evidence that epigenetic modifications are capable of influencing, and in extreme cases promoting, DNA sequence mutations (Lutsenko and Bhagwat, 1999; Schuster-Bockler and Lehner, 2012; Tang *et al.*, 2012). Similarly, variation in the genome sequence can affect methylation marks at regulatory regions and condition histone binding (Kilpinen *et al.*, 2013; McVicker *et al.*, 2013), thus regulating overall genome stability (Skinner, 2011; You and Jones, 2012; Kasowski *et al.*, 2013). Illustrative of this phenomenon, short telomere lengths have been implicated in instigating cell senescence as well as genetic and epigenetic instability that increased the risk of cancer (Willeit *et al.*, 2010). Such changes may also influence the genetic and epigenetic information transmitted to future generations if incorporated into the genome of their gametes (Hao *et al.*, 2005; Roberts *et al.*, 2013).

Accordingly, environmental factors and biological processes influencing either epigenetic or genetic modifications have an attendant risk of impacting, either directly or indirectly, both forms of information. In extending the example described above whereby vinclozolin promotes DNA methylation changes and transgenerational inheritance of modified epigenetic patterns via the male gametes (Anway *et al.*, 2006a,b; Nilsson *et al.*, 2008; Guerrero-Bosagna *et al.*, 2010), subsequent investigations have shown that differential methylation in non-coding regions are correlated with a significant increase in genetic copy number variation mutations in offspring. Moreover these mutations are able to persist up to the third generation (Manikkam *et al.*, 2012; Skinner and Guerrero-Bosagna, 2014; Skinner *et al.*, 2015).

The impact of ageing on the inheritance of transgenerational information

The biological process of ageing involves widespread molecular mechanisms that influence the genetic and epigenetic composition of an individual's cells and is often associated with increased susceptibility to diseases and abnormal syndromes. Additionally, the age of parents at the time of conception has been shown to correlate with an increase in the number of genetic mutations carried by their children (Kong *et al.*, 2012). In humans, the offspring of ageing mothers experience an increased risk of non-disjunction anomalies giving rise to genetic disorders such as Down syndrome (Hassold and Hunt, 2009). In the case of fathers, the ageing process has been associated with an increase in the number of mutational errors in their genome and an attendant rise in the incidence of congenital anomalies, different forms of cancer and neurological abnormalities in their offspring (Malaspina, 2001; Murray *et al.*, 2002; Choi *et al.*, 2005; Grether *et al.*, 2009; Aitken and De Iuliis, 2010; Green *et al.*, 2010; Aitken, 2013). While the mechanisms linking increased disease risk and advanced paternal age have not yet been elucidated (Chen *et al.*, 2008; Petersen *et al.*, 2011), the circumstantial evidence linking paternal age with an increased level of DNA damage in sperm cells, a rise in the rate of mutations in their offspring and a variety of disease states (including complex neurological conditions such as autism and spontaneous schizophrenia) is extremely strong (Schmid *et al.*, 2007; Aitken and De Iuliis, 2010; Aitken *et al.*, 2012, 2013; Goriely and Wilkie, 2012; Kong *et al.*, 2012). In general,

Table II Common genetic modifications and associated effects on the mammalian genome.

Genetic modifications	Effect on genome function
Single nucleotide polymorphisms	Exchange of a single nucleotide in the DNA sequence. Predominantly neutral or deleterious effect on phenotype of individuals. Rarely evolutionary advantageous.
Copy number variants	Duplication or deletion of repeat elements in defined genomic regions affect genomic structure and regulate gene expression.
De novo transposable elements insertions	Insertion of mobile DNA elements into new genomic positions, commonly Alu sequence. May interrupt or modify gene function if transferred into the sequence of an extant gene.
Telomere length	Non-coding repeat DNA elements at the extremities of all chromosomes. Protect chromosomal degradation and end-to-end fusion. Telomere shortening known to provoke replicative senescence.

paternal age can have an impact on the well-being of children via three fundamental mechanisms: genetic mutations, telomere length and epigenetic changes to both the DNA and associated protein PTMs.

The accumulation of mutations in the germ cells of ageing mammalian fathers is commonly attributed to an increased incidence of replication errors in the PGCs that sees them transmitted to all developing sperm cells (Crow, 2000; Goriely et al., 2009). However, in mice at least, the DNA proofreading and repair mechanisms presiding over the male germline have been shown to be extremely efficient in repairing errors. This may help explain the seemingly low rate of spontaneous mutations arising in the spermatozoa of ageing mice compared to that of their somatic cells (Hill et al., 2005). Thus when age-related dominant mutations do occur in the male germline they are rare and frequently influenced by other factors such as enhanced stem cell fitness in spermatogonial stem cells, as reflected by the fibroblast growth factor receptor 2 (*Fgfr2*) mutation associated with Apert syndrome (Martin et al., 2014). Indeed, mutations that enhance stem cell proliferation are known to give rise to 'hotspots' in the testes of spermatogonia carrying mutated genes (Maher et al., 2018). Given the excellent DNA editing and repair capacity of the male germline, it is conceivable that the linear increase in *de novo* genetic mutations seen in children as a consequence of paternal ageing (Goldmann et al., 2016; Goriely, 2016) may involve non-replication dependent mechanism(s), such as those discussed below, which are enacted after gamete production has occurred.

The length of telomeres is known to be consistently shortened after each chromosomal replication event (Blackburn, 2005) and in most proliferating tissues occurs concurrently with ageing (Ishii et al., 2006; Kimura et al., 2008). Thus, telomere length can be considered to function as a mitotic clock that regulates cell proliferation and, upon reaching a critical length, stalls cell division and initiates apoptosis. Several proliferating cell types, including stem and cancer cells, avoid cellular senescence by increasing telomerase activity and thus lengthening their telomeric regions (Blackburn, 2005). In humans, inheritance of telomere length has been proposed to occur via the paternal side (Nordfjall et al., 2005; Njajou et al., 2007), with paternal age influencing the length of telomeres in offspring for several generations (De Meyer et al., 2007; Eisenberg et al., 2012). The production of spermatozoa with longer telomeres in older men has been attributed to increased telomerase activity in the testes (Baird et al., 2006; Kimura et al., 2008). Interestingly, this process of inheritance regulating offspring telomere length is further compounded by the age of the paternal grandfathers. Thus, individuals conceived from a legacy of both grandfathers

and fathers that were old at the time of conception possess telomeric regions that are longer than might otherwise be expected (Eisenberg et al., 2012).

In addition to impacting genomic integrity, the ageing process has also been shown to alter both the methylation status of sperm DNA (Jenkins et al., 2014, 2018a; Milekic et al., 2015; Ciccarone et al., 2018) and the composition of histones (Jenkins and Carrell, 2012). In the work by Jenkins et al. (2014), changes to sperm DNA methylation patterns of fertile donors were evaluated in two samples collected at intervals of 9–19 years. This strategy identified numerous age-related changes in the sperm DNA methylome, including an enrichment at genes previously associated with schizophrenia and bipolar disorder. While such data do not establish a causative relationship, they do raise the prospect that altered sperm DNA methylation profiles could contribute to an increased incidence of neuropsychiatric and other disorders in the offspring of older males (Jenkins et al., 2014). Similarly, experiments in rodent models have provided initial evidence that paternal age can influence behavioural traits and exacerbate ageing-related pathologies in offspring (Jenkins et al., 2018b), with recent genome-wide epigenetic analyses linking such changes to differential methylation of promoters for genes involved in the regulation of evolutionarily conserved longevity pathways (Xie et al., 2018). In the context of histone modifications, it is known these DNA binding proteins continually acquire new methyl groups after each cell division (Wang et al., 2018). Thus, older histones tend to accumulate and exhibit higher methylation levels compared to that of newly synthesized histones (Gonzalo, 2010; Xu et al., 2012). In several mammalian cell types, the methylation status at specific sites in histones H3 and H4 has been shown to vary with age (Sarg et al., 2002; Fraga and Esteller, 2007; Wang et al., 2010). However, histone modifications within the male germline have not been studied in detail as a function of paternal age. Environmental and lifestyle factors are thought to alter histone retention by the male germline as well as histone alkylation status but the detailed nature of these changes and the developmental consequences for the offspring remain unknown. Given the reported changes to histone PTMs during somatic cell ageing (Agherbi et al., 2009; Gonzalo, 2010), it is plausible that histone modifications may influence the state of the heritable information transmitted to the offspring of ageing parents. Similarly, the impact of ageing on the ncRNA species generated or acquired by the germline during gametogenesis or epididymal maturation (Nixon et al., 2015) has not been clearly resolved but is likely to play an important role in the determination of offspring health (Yuan et al., 2016).

The impact of oxidative stress on the inheritance of transgenerational information

The future direction of research on transgenerational information inheritance will now inevitably focus on the underlying mechanisms with a view to understanding how epigenetic changes in the germline can either be inherited in their own right or become fixed in the genome as genetic mutations in the offspring that will be transmitted to future generations. The proximal drivers for such epigenetic change include ageing as well as a variety of lifestyle and environmental factors such as cigarette smoking, alcohol consumption and exposure to chemical toxicants (Fullston *et al.*, 2017). We hypothesize that all such factors induce epigenetic modifications in the germline that have the potential to become converted into mutations in the offspring as a result of aberrant or inefficient repair. Since the female germline spends most of its life in a state of repose, we further suggest that this process of epigenetic change in gametes leading to genetic mutations in the offspring is largely focused on the male, as is demonstrable in the case of ageing, smoking and obesity (Kong *et al.*, 2012; Fullston *et al.*, 2017; Gunes *et al.*, 2018). In this context, there is clearly a variety of possible mechanisms that might underpin epigenetic changes in the male germline with potential impacts on offspring health (DNA methylation, histone/protamine PTMs, alterations to the complement of sperm-borne small ncRNAs, increased sperm DNA damage, changes to the sperm centrosome, etc.). However, the only one of these epigenetic changes that might readily precipitate a mutation in the offspring is chemical modification or damage to the DNA itself. We propose that a key element in this process is oxidative stress and that the major agent of change is 8-hydroxy-2'-deoxyguanosine (8OHdG) formation within the male germline.

Oxidative stress is known to be a major feature of ageing (Balaban *et al.*, 2005; Haigis and Yankner, 2010) and has been often associated with an increased production of reactive oxygen species (ROS) in spermatozoa (Aitken and Clarkson, 1987; De Iuliis *et al.*, 2009; Aitken *et al.*, 2010; Aitken and Curry, 2011). Increased ROS production has also been linked to epigenetic modifications in cancerous cells, where alterations to established DNA methylation patterns have been found to occur in response to elevated levels of ROS (Donkena *et al.*, 2010; Ziech *et al.*, 2010) that, in turn, interfere with methyltransferases activity, thereby reducing methylation patterns on both a local and global scale (Franco *et al.*, 2008). Among other known consequences of elevated ROS production, oxidative stress can promote gene silencing via hypermethylation of tumour suppressor gene promoter regions, thus promoting the expression of cancerous phenotypes (Campos *et al.*, 2007; Ziech *et al.*, 2011). The progressive accumulation of oxidative damage in mammalian cells has also been found to trigger telomere shortening and replicative senescence (Passos and von Zglinicki, 2005). However, one of the most profound changes induced by oxidative stress, and one of the most significant in terms of transgenerational information inheritance, is chemical modification of guanine bases to produce the highly mutagenic base adduct, 8OHdG.

Spermatozoa are particularly vulnerable to oxidative attack as a consequence of their limited capacity for DNA repair (Smith *et al.*, 2013a,b) and the minimal availability and restricted distribution of cytoplasmic space in which to house the antioxidant enzymes that

protect somatic cells from oxidative attack. The presence of 8OHdG adducts in sperm chromatin is therefore relatively common, possibly due to the powerful oxidizing post-testicular environment presented by the male reproductive tract (Esteves *et al.*, 2017). Indeed, if the major antioxidant in this region of the male reproductive tract, glutathione peroxidase 5 (*Gpx5*), is functionally deleted then the spermatozoa exhibit high levels of 8OHdG formation and there is an increase in the incidence of birth defects and miscarriages above control levels as the males age (Chabory *et al.*, 2009).

When spermatozoa experience oxidative DNA damage as a consequence of ageing, lifestyle, environmental factors or simply the long and perilous journey to the site of fertilization, it is then the responsibility of the oocyte to repair this DNA damage prior to the initiation of S phase of the first mitotic division. If the oocyte conducts inadequate or aberrant repair of this DNA damage, it opens the opportunity for mutations to occur that will affect every cell in the body. Since 8OHdG lesions are the most common kind of DNA damage in spermatozoa, attention has focused on the base excision repair (BER) pathway responsible for repairing oxidative DNA damage, the first enzyme of which, 8-oxoguanine DNA glycosylase (OGG-1), is clearly present in spermatozoa (Smith *et al.*, 2013b).

OGG-1 cleaves the oxidized base out of the DNA duplex to generate a corresponding abasic site thereby destabilizing the ribose-phosphate backbone, leading to a β -elimination or a ring opening reaction of the ribose unit and a potential strand break. Because spermatozoa do not possess the next components of the BER pathway, namely apurinic endonuclease 1 and X-ray-repair-complementing-defective-repair-in-Chinese-hamster-cells 1, the abasic sites created by OGG-1 persist in the male genome until fertilization occurs. At this point, the oocyte, which contains these factors in abundance, continues the BER pathway in preparation for S phase of the first mitotic division (Smith *et al.*, 2013b). The major flaw in this otherwise laudable example of inter-gender co-operation is that the oocyte expresses OGG-1 at a relatively low level (Lord and Aitken, 2015). As a consequence, if the spermatozoon carries into the oocyte unresolved oxidized base lesions, the oocyte has a limited capacity to affect their removal. This is a significant biological problem because mammalian spermatozoa frequently express high levels of 8OHdG as a consequence of factors such as ageing (Selvaratnam *et al.*, 2015). The persistence of these highly mutagenic lesions into S phase of the first mitotic division may therefore explain why mutation frequencies rise as a linear function of paternal age, even though mutation rates in the germline itself are relatively low (Tiemann-Boege *et al.*, 2002; Aitken and Curry, 2011; Smith *et al.*, 2013a,b). When high levels 8OHdG are artificially created in spermatozoa by removing antioxidant protection via functional inactivation of the BER pathway, the result is a high mutational load carried by the offspring, an increased incidence of miscarriage and, for those embryos that do progress to term, birth defects and morbidity in the progeny, including cancer, resulting in a significant shortening of lifespan (Ohno *et al.*, 2014). Similarly, when 8OHdG adducts are created in spermatozoa as a result of heavy paternal smoking, one of the major consequences of this activity is a significant increase in childhood cancer rates (Lee *et al.*, 2009).

Given this background, it will now be important to determine which areas of the paternal genome are damaged under conditions of oxidative stress and determine how such damage can generate mutations leading to morbidity in the offspring. Sperm DNA is

condensed to a point close to its physical limits of compaction, forming an almost crystalline structure (Johnson *et al.*, 2011; Smith *et al.*, 2013a; Casas and Vavouri, 2014). In its fully compacted state, sperm DNA becomes extremely difficult to damage (Aitken *et al.*, 2003; Miller *et al.*, 2010). Regardless, small portions of the remodelled chromatin structure remain susceptible to oxidative damage, particularly genomic regions between protamine-bound DNA structures, histone-bound regions and domains attached to the nuclear membrane (Noblanc *et al.*, 2013; Kocer *et al.*, 2015).

Of course, not all of the genetic damage created following ROS exposure is confined to 8OHdG formation. Modifications of DNA methylation and histone chemistry can occur in response to ROS (Franco *et al.*, 2008; Donkena *et al.*, 2010; Ziech *et al.*, 2010). Moreover, such changes have the potential to alter the effectiveness of epigenetic erasure, the binding capacity of DNA domains and the successful removal of histones and replacement with protamines. Thus the oxidative stress that pervades the germline of sub-fertile patients has the potential to create a heavy burden of damage to both the genome and the epigenome of the embryo with clear implications for the health trajectory of the offspring. In light of the wide range of conditions associated with oxidative stress in the male germline that are traditionally treated by ART (age, cryostorage, varicocele, infection, obesity, smoking and exposure to toxicants), there are particular implications for the normality of offspring generated by such technology, which deserve our scrutiny (Zini *et al.*, 2008; Aitken, 2009; Aitken *et al.*, 2009; Kobayashi *et al.*, 2009).

Conclusion

In conclusion, epigenetic modifications to histones, telomeres, ncRNAs, DNA and subcellular structures (mitochondria and centrosome) inherited through the germline may all have important consequences for the phenotype of the offspring. However, there are a variety of mechanisms operating to wipe the epigenetic slate clean between generations, so that short-term adaptive changes to the epigenome are not transmitted to the progeny. Nevertheless, the ability of epigenetic changes to the DNA, particularly 8OHdG formation, to generate mutations (such as deletions and transversions) following aberrant or inefficient repair by the oocyte, can have a lasting impact on offspring health and be readily transmitted across the generations. As a result, any of the many environmental or lifestyle factors known to be capable of causing oxidative stress in the germline can influence the genetic variability in the offspring. This may have important evolutionary significance, with environmental change creating a state of oxidative stress in the testes that then increases genetic variation in the offspring, thereby facilitating the process of natural selection. However, at an individual level, such oxidatively induced genetic variation may be pathological and responsible for a wide variety of paternally determined conditions, from complex neurological diseases such as spontaneous schizophrenia and autism that are correlated with the oxidative stress associated with paternal age (Aitken *et al.*, 2013), to the childhood cancers associated with paternal smoking (Lee *et al.*, 2009). In this context we might regard the testes as either the engine of evolution or an agent of affliction depending on scale and adaptive significance. This proposed mechanism is therefore central to the origin of *de novo* mutations carried by children as a consequence of factors influencing the integrity

of their parents' germline and disrupting the accurate flow of genetic and epigenetic information from one generation to the next.

Authors' roles

M.J.X. designed the study, identified the articles, drafted and revised the manuscript. R.J.A. designed the study and revised the manuscript. B.N. and S.D.R. edited and revised the manuscript. All authors approved the final version of the manuscript.

Funding

This work was supported by the University of Newcastle's Priority Research Centre for Reproductive Sciences.

Conflict of interest

None of the authors has any conflict of interest related to this publication.

References

- Agherbi H, Gaussmann-Wenger A, Verthuy C, Chasson L, Serrano M, Djabali M. Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence. *PLoS One* 2009;4:e5622.
- Aitken RJ. Gpx5 protects the family jewels. *J Clin Invest* 2009;119:1849–1851.
- Aitken RJ. Human spermatozoa: revelations on the road to conception. *F1000Prime Rep* 2013;5:39.
- Aitken RJ, Baker MA, Sawyer D. Oxidative stress in the male germline and its role in the aetiology of male infertility and genetic disease. *Reprod Biomed Online* 2003;7:65–70.
- Aitken RJ, Bronson R, Smith TB, De Iuliis GN. The source and significance of DNA damage in human spermatozoa; a commentary on diagnostic strategies and straw man fallacies. *Mol Hum Reprod* 2013;19:475–485.
- Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. *J Reprod Fertil* 1987;81:459–469.
- Aitken RJ, Curry BJ. Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germline. *Antioxid Redox Signal* 2011;14:367–381.
- Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. *Mol Hum Reprod* 2010;16:3–13.
- Aitken RJ, de Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. *Hum Reprod* 2010;25:2415–2426.
- Aitken RJ, De Iuliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germline. *Int J Androl* 2009;32:46–56.
- Aitken RJ, Jones KT, Robertson SA. Reactive oxygen species and sperm function—in sickness and in health. *J Androl* 2012;33:1096–1106.
- Akhtar A, Cavalli G. The epigenome network of excellence. *PLoS Biol* 2005;3:e177.

Andrew T, Aviv A, Falchi M, Surdulescu GL, Gardner JP, Lu X, Kimura M, Kato BS, Valdes AM, Spector TD. Mapping genetic loci that determine leukocyte telomere length in a large sample of unselected female sibling pairs. *Am J Hum Genet* 2006; **78**:480–486.

Antonarakis SE, Beckmann JS. Mendelian disorders deserve more attention. *Nat Rev Genet* 2006; **7**:277–282.

Anway MD, Leathers C, Skinner MK. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. *Endocrinology* 2006a; **147**:5515–5523.

Anway MD, Memon MA, Uzumcu M, Skinner MK. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. *J Androl* 2006b; **27**:868–879.

Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. *Science* 2007; **316**:744–747.

Arbeev KG, Hunt SC, Kimura M, Aviv A, Yashin AI. Leukocyte telomere length, breast cancer risk in the offspring: the relations with father's age at birth. *Mech Ageing Dev* 2011; **132**:149–153.

Baird DM, Britt-Compton B, Rowson J, Amso NN, Gregory L, Kipling D. Telomere instability in the male germline. *Hum Mol Genet* 2006; **15**:45–51.

Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. *Cell* 2005; **120**:483–495.

Balhorn R. The protamine family of sperm nuclear proteins. *Genome Biol* 2007; **8**:227.

Balhorn R, Brewer L, Corzett M. DNA condensation by protamine and arginine-rich peptides: analysis of toroid stability using single DNA molecules. *Mol Reprod Dev* 2000; **56**:230–234.

Becker C, Weigel D. Epigenetic variation: origin and transgenerational inheritance. *Curr Opin Plant Biol* 2012; **15**:562–567.

Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, Langley RJ, Zhang L, Lee CC, Schilkey FD et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. *Sci Transl Med* 2011; **3**:65ra4.

Bjorge C, Brunborg G, Wiger R, Holme JA, Scholz T, Dybing E, Soderlund EJ. A comparative study of chemically induced DNA damage in isolated human and rat testicular cells. *Reprod Toxicol* 1996; **10**:509–519.

Blackburn EH. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. *FEBS Lett* 2005; **579**:859–862.

Blewitt ME, Vickaryous NK, Paldi A, Koseki H, Whitelaw E. Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice. *PLoS Genet* 2006; **2**:e49.

Borgel J, Guibert S, Li Y, Chiba H, Schubeler D, Sasaki H, Forne T, Weber M. Targets and dynamics of promoter DNA methylation during early mouse development. *Nat Genet* 2010; **42**:1093–1100.

Braun RE. Packaging paternal chromosomes with protamine. *Nat Genet* 2001; **28**:10–12.

Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schubeler D, Stadler MB, Peters AH. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. *Nat Struct Mol Biol* 2010; **17**:679–687.

Burton A, Torres-Padilla ME. Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. *Brief Funct Genomics* 2010; **9**:444–454.

Butterworth BE, Eldridge SR, Sprankle CS, Working PK, Bentley KS, Hurt ME. Tissue-specific genotoxic effects of acrylamide and acrylonitrile. *Environ Mol Mutagen* 1992; **20**:148–155.

Campos AC, Molognoni F, Melo FH, Galdieri LC, Carneiro CR, D'Almeida V, Correa M, Jasiulionis MG. Oxidative stress modulates DNA methylation during melanocyte anchorage blockade associated with malignant transformation. *Neoplasia* 2007; **9**:1111–1121.

Carmell MA, Girard A, van de Kant HJ, Bourc'his D, Bestor TH, de Rooij DG, Hannon GJ. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. *Dev Cell* 2007; **12**:503–514.

Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. *Cell* 2010; **143**:1084–1096.

Casas E, Vavouris T. Sperm epigenomics: challenges and opportunities. *Front Genet* 2014; **5**:330.

Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. *Nat Rev Genet* 2009; **10**:295–304.

Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, Garrel C, Saez F, Cadet R, Henry-Berger J et al. Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. *J Clin Invest* 2009; **119**:2074–2085.

Champroux A, Cocquet J, Henry-Berger J, Drevet JR, Kocer A. A decade of exploring the mammalian sperm epigenome: paternal epigenetic and transgenerational inheritance. *Front Cell Dev Biol* 2018; **6**:50.

Chan TL, Yuen ST, Kong CK, Chan YW, Chan AS, Ng WF, Tsui WY, Lo MW, Tam WY, Li VS et al. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. *Nat Genet* 2006; **38**:1178–1183.

Cheikhi A, Wallace C, St Croix C, Cohen C, Tang WY, Wipf P, Benos PV, Ambrosio F, Barchowsky A. Mitochondria are a substrate of cellular memory. *Free Radic Biol Med* 2019; **130**:528–541.

Chen X, Xiong J, Xu M, Chen S, Zhu B. Symmetrical modification within a nucleosome is not required globally for histone lysine methylation. *EMBO Rep* 2011; **12**:244–251.

Chen XK, Wen SW, Krewski D, Fleming N, Yang Q, Walker MC. Paternal age and adverse birth outcomes: teenager or 40+, who is at risk? *Hum Reprod* 2008; **23**:1290–1296.

Chianese R, Troisi J, Richards S, Scafuro M, Fasano S, Guida M, Pierantoni R, Meccariello R. Bisphenol a in reproduction: epigenetic effects. *Curr Med Chem* 2018; **25**:748–770.

Choi JY, Lee KM, Park SK, Noh DY, Ahn SH, Yoo KY, Kang D. Association of paternal age at birth and the risk of breast cancer in offspring: a case control study. *BMC Cancer* 2005; **5**:143.

Chong S, Vickaryous N, Ashe A, Zamudio N, Youngson N, Hemley S, Stopka T, Skoultschi A, Matthews J, Scott HS et al. Modifiers of epigenetic reprogramming show paternal effects in the mouse. *Nat Genet* 2007; **39**:614–622.

Ciccarone F, Tagliatesta S, Caiafa P, Zampieri M. DNA methylation dynamics in aging: how far are we from understanding the mechanisms? *Mech Ageing Dev* 2018; **174**:3–17.

Conine CC, Sun F, Song L, Rivera-Perez JA, Rando OJ. Small RNAs gained during epididymal transit of sperm are essential for embryonic development in mice. *Dev Cell* 2018; **46**:470–480 e473.

Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. *Hum Genet* 2013; **132**:1077–1130.

Cowley M, Oakey RJ. Resetting for the next generation. *Mol Cell* 2012; **48**:819–821.

Crow JF. The origins, patterns and implications of human spontaneous mutation. *Nat Rev Genet* 2000; **1**:40–47.

Dahl JA, Jung I, Aanes H, Grggains GD, Manaf A, Lerdrup M, Li G, Kuan S, Li B, Lee AY et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. *Nature* 2016; **537**:548–552.

Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. *Nat Rev Genet* 2012; **13**:153–162.

De Carvalho DD, Sharma S, You JS, Su SF, Taberlay PC, Kelly TK, Yang X, Liang G, Jones PA. DNA methylation screening identifies driver epigenetic events of cancer cell survival. *Cancer Cell* 2012; **21**:655–667.

De Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, Nixon B, Aitken RJ. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2'-deoxyguanosine, a marker of oxidative stress. *Biol Reprod* 2009; **81**:517–524.

De Meyer T, Rietzschel ER, De Buyzere ML, De Bacquer D, Van Criekinge W, De Backer GG, Gillebert TC, Van Oostveldt P, Bekaert S. Asklepios i. Paternal age at birth is an important determinant of offspring telomere length. *Hum Mol Genet* 2007; **16**: 3097–3102.

DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. *Am J Hum Genet* 2003; **72**:156–160.

Delage B, Dashwood RH. Dietary manipulation of histone structure and function. *Annu Rev Nutr* 2008; **28**:347–366.

Delaval K, Govin J, Cerqueira F, Rousseaux S, Khochbin S, Feil R. Differential histone modifications mark mouse imprinting control regions during spermatogenesis. *EMBO J* 2007; **26**:720–729.

van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, van der Vlag J, de Boer P. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. *Mech Dev* 2005; **122**: 1008–1022.

Ding GL, Wang FF, Shu J, Tian S, Jiang Y, Zhang D, Wang N, Luo Q, Zhang Y, Jin F et al. Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. *Diabetes* 2012; **61**:1133–1142.

Docherty LE, Rezwan FI, Poole RL, Jagoe H, Lake H, Lockett GA, Arshad H, Wilson DI, Holloway JW, Temple IK et al. Genome-wide DNA methylation analysis of patients with imprinting disorders identifies differentially methylated regions associated with novel candidate imprinted genes. *J Med Genet* 2014; **51**:229–238.

Donkena KV, Young CY, Tindall DJ. Oxidative stress and DNA methylation in prostate cancer. *Obstet Gynecol Int* 2010; **2010**: 302051.

Drake AJ, Walker BR, Seckl JR. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. *Am J Physiol Regul Integr Comp Physiol* 2005; **288**:R34–R38.

Duhl DM, Stevens ME, Vrieling H, Saxon PJ, Miller MW, Epstein CJ, Barsh GS. Pleiotropic effects of the mouse lethal yellow (Ay) mutation explained by deletion of a maternally expressed gene and the simultaneous production of agouti fusion RNAs. *Development* 1994; **120**:1695–1708.

Durcova-Hills G, Ainscough J, McLaren A. Pluripotential stem cells derived from migrating primordial germ cells. *Differentiation* 2001; **68**: 220–226.

Dworkin-Rastl E, Kandolf H, Smith RC. The maternal histone H1 variant, H1M (B4 protein), is the predominant H1 histone in *Xenopus* pregastrula embryos. *Dev Biol* 1994; **161**:425–439.

Dybing E, Sanner T. Risk assessment of acrylamide in foods. *Toxicol Sci* 2003; **75**:7–15.

Ebert A, Lein S, Schotta G, Reuter G. Histone modification and the control of heterochromatic gene silencing in *Drosophila*. *Chromosome Res* 2006; **14**:377–392.

Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. *Nat Rev Mol Cell Biol* 2018; **19**: 436–450.

Ehling UH, Neuhäuser-Klaus A. Reevaluation of the induction of specific locus mutations in spermatogonia of the mouse by acrylamide. *Mutat Res* 1992; **283**:185–191.

Eisenberg DT, Hayes MG, Kuzawa CW. Delayed paternal age of reproduction in humans is associated with longer telomeres across two generations of descendants. *Proc Natl Acad Sci USA* 2012; **109**:10251–10256.

El Kennani S, Crespo M, Govin J, Pflieger D. Proteomic analysis of histone variants and their PTMs: strategies and pitfalls. *Proteomes* 2018; **6**: E29.

Esteves SC, Roque M, Garrido N. Use of testicular sperm for intracytoplasmic sperm injection in men with high sperm DNA fragmentation: a SWOT analysis. *Asian J Androl* 2017.

Faulk C, Dolinoy DC. Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. *Eugenetics* 2011; **6**:791–797.

Felsenfeld G, Groudine M. Controlling the double helix. *Nature* 2003; **421**:448–453.

Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. *Science* 2010; **330**:622–627.

Ficz G, Hore TA, Santos F, Lee HJ, Dean W, Arand J, Krueger F, Oxley D, Paul YL, Walter J et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. *Cell Stem Cell* 2013; **13**:351–359.

Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. *Nat Chem Biol* 2011; **7**:113–119.

Fleming JL, Huang TH, Toland AE. The role of parental and grandparental epigenetic alterations in familial cancer risk. *Cancer Res* 2008; **68**:9116–9121.

Fraga MF, Agrelo R, Esteller M. Cross-talk between aging and cancer: the epigenetic language. *Ann N Y Acad Sci* 2007; **1100**:60–74.

Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. *Trends Genet* 2007; **23**:413–418.

Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI. Oxidative stress, DNA methylation and carcinogenesis. *Cancer Lett* 2008; **266**:6–11.

Franklin TB, Russig H, Weiss IC, Graff J, Linder N, Michalon A, Vizi S, Mansuy IM. Epigenetic transmission of the impact of early stress across generations. *Biol Psychiatry* 2010; **68**:408–415.

Fullston T, McPherson NO, Zander-Fox D, Lane M. The most common vices of men can damage fertility and the health of the next generation. *J Endocrinol* 2017; **234**:F1–F6.

Fullston T, Palmer NO, Owens JA, Mitchell M, Bakos HW, Lane M. Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. *Hum Reprod* 2012; **27**:1391–1400.

Gapp K, Bohacek J. Epigenetic germline inheritance in mammals: looking to the past to understand the future. *Genes Brain Behav* 2018; **17**:e12407.

Gasparini P, Rabionet R, Barbujani G, Melchionda S, Petersen M, Brondum-Nielsen K, Metspalu A, Oitmaa E, Pisano M, Fortina P et al. High carrier frequency of the 35delG deafness mutation in European populations. Genetic Analysis Consortium of GJB2 35delG. *Eur J Hum Genet* 2000; **8**:19–23.

Gaucher J, Reynoard N, Montellier E, Boussouar F, Rousseaux S, Khochbin S. From meiosis to postmeiotic events: the secrets of histone disappearance. *FEBS J* 2010; **277**:599–604.

Ghosh S, Sengupta S, Scaria V. Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria. *Mitochondrion* 2014; **18**:58–62.

Godfrey KM, Inskip HM, Hanson MA. The long-term effects of prenatal development on growth and metabolism. *Semin Reprod Med* 2011; **29**:257–265.

Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, Hanson MA. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. *Pediatr Res* 2007; **61**:5R–10R.

Gold HB, Jung YH, Corces VG. Not just heads and tails: the complexity of the sperm epigenome. *J Biol Chem* 2018; **293**:13815–13820.

Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. *Cell* 2007; **128**:635–638.

Goldmann JM, Wong WS, Pinelli M, Farrah T, Bodian D, Stittrich AB, Glusman G, Vissers LE, Hoischen A, Roach JC et al. Parent-of-origin-specific signatures of de novo mutations. *Nat Genet* 2016; **48**:935–939.

Gonzalo S. Epigenetic alterations in aging. *J Appl Physiol (1985)* 2010; **109**:586–597.

Goriely A. Decoding germline de novo point mutations. *Nat Genet* 2016; **48**:823–824.

Goriely A, Hansen RM, Taylor IB, Olesen IA, Jacobsen GK, McGowan SJ, Pfeifer SP, McVean GA, Rajpert-De Meyts E, Wilkie AO. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. *Nat Genet* 2009; **41**:1247–1252.

Goriely A, Wilkie AO. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. *Am J Hum Genet* 2012; **90**:175–200.

Graakjaer J, Der-Sarkissian H, Schmitz A, Bayer J, Thomas G, Kolvraa S, Londono-Vallejo JA. Allele-specific relative telomere lengths are inherited. *Hum Genet* 2006; **119**:344–350.

Green RF, Devine O, Crider KS, Olney RS, Archer N, Olshan AF, Shapira SK, National Birth Defects Prevention S. Association of paternal age and risk for major congenital anomalies from the National Birth Defects Prevention Study, 1997 to 2004. *Ann Epidemiol* 2010; **20**:241–249.

Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A. Transgenerational epigenetic inheritance of longevity in *Caenorhabditis elegans*. *Nature* 2011; **479**:365–371.

Grether JK, Anderson MC, Croen LA, Smith D, Windham GC. Risk of autism and increasing maternal and paternal age in a large north American population. *Am J Epidemiol* 2009; **170**:1118–1126.

Guerrero-Bosagna C, Covert TR, Haque MM, Settles M, Nilsson EE, Anway MD, Skinner MK. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. *Reprod Toxicol* 2012; **34**:694–707.

Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. *PLoS One* 2010; **5**:e13100.

Guibert S, Forne T, Weber M. Global profiling of DNA methylation erasure in mouse primordial germ cells. *Genome Res* 2012; **22**:633–641.

Gunes S, Metin Mahmutoglu A, Arslan MA, Henkel R. Smoking-induced genetic and epigenetic alterations in infertile men. *Andrologia* 2018; **50**:e13124.

Habibi E, Brinkman AB, Arand J, Kroese LI, Kerstens HH, Matarese F, Lepikhov K, Gut M, Brun-Heath I, Hubner NC et al. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. *Cell Stem Cell* 2013; **13**:360–369.

Hackett JA, Surani MA. DNA methylation dynamics during the mammalian life cycle. *Philos Trans R Soc Lond B Biol Sci* 2013; **368**:20110328.

Hadchouel M, Farza H, Simon D, Tiollais P, Pourcel C. Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation. *Nature* 1987; **329**:454–456.

Haigis MC, Yankner BA. The aging stress response. *Mol Cell* 2010; **40**:333–344.

Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, Lee C, Almouzni G, Schneider R, Surani MA. Chromatin dynamics during epigenetic reprogramming in the mouse germline. *Nature* 2008; **452**:877–881.

Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA. Epigenetic reprogramming in mouse primordial germ cells. *Mech Dev* 2002; **117**:15–23.

Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. *Nature* 2009; **460**:473–478.

Hanna CW, Taudt A, Huang J, Gahurova L, Kranz A, Andrews S, Dean W, Stewart AF, Colome-Tatche M, Kelsey G. MLL2 conveys transcription-independent H3K4 trimethylation in oocytes. *Nat Struct Mol Biol* 2018; **25**:73–82.

Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A, Rappaport J, Lerdrup M, Helin K. A model for transmission of the H3K27me3 epigenetic mark. *Nat Cell Biol* 2008; **10**:1291–1300.

Hansen SH, Olsen AK, Soderlund Ej, Brunborg G. In vitro investigations of glycidamide-induced DNA lesions in mouse male germ cells and in mouse and human lymphocytes. *Mutat Res* 2010; **696**:55–61.

Hao LY, Armanios M, Strong MA, Karim B, Feldser DM, Huso D, Greider CW. Short telomeres, even in the presence of telomerase, limit tissue renewal capacity. *Cell* 2005; **123**:1121–1131.

Hassold T, Hunt P. Maternal age and chromosomally abnormal pregnancies: what we know and what we wish we knew. *Curr Opin Pediatr* 2009; **21**:703–708.

Hauser MT, Aufsatz W, Jonak C, Luschnig C. Transgenerational epigenetic inheritance in plants. *Biochim Biophys Acta* 2011; **1809**:459–468.

Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE, Kuan S, Luu Y, Klugman S et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. *Cell Stem Cell* 2010; **6**:479–491.

Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. *Cell* 2014; **157**:95–109.

Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. Persistent epigenetic differences associated with prenatal exposure to famine in humans. *Proc Natl Acad Sci USA* 2008; **105**:17046–17049.

Heneghan HM, Miller N, Kerin MJ. Role of microRNAs in obesity and the metabolic syndrome. *Obes Rev* 2010; **11**:354–361.

Hill KA, Halangoda A, Heinmoeller PW, Gonzalez K, Chitaphan C, Longmate J, Scaringe WA, Wang JC, Sommer SS. Tissue-specific time courses of spontaneous mutation frequency and deviations in mutation pattern are observed in middle to late adulthood in big blue mice. *Environ Mol Mutagen* 2005; **45**:442–454.

Hill PWS, Leitch HG, Requena CE, Sun Z, Amouroux R, Roman-Trufero M, Borkowska M, Terragni J, Vaisvila R, Linnett S et al. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. *Nature* 2018; **555**:392–396.

Hirasawa R, Chiba H, Kaneda M, Tajima S, Li E, Jaenisch R, Sasaki H. Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. *Genes Dev* 2008; **22**:1607–1616.

Hitchins MP. Inheritance of epigenetic aberrations (constitutional epimutations) in cancer susceptibility. *Adv Genet* 2010; **70**:201–243.

Hitchins MP, Wong JJ, Suthers G, Suter CM, Martin DI, Hawkins NJ, Ward RL. Inheritance of a cancer-associated MLH1 germ-line epimutation. *N Engl J Med* 2007; **356**:697–705.

Holliday R. Epigenetics: an overview. *Dev Genet* 1994; **15**:453–457.

Huang C, Xu M, Zhu B. Epigenetic inheritance mediated by histone lysine methylation: maintaining transcriptional states without the precise restoration of marks. *Philos Trans R Soc Lond B Biol Sci* 2013; **368**:20110332.

Hutcheon K, McLaughlin EA, Stanger SJ, Bernstein IR, Dun MD, Eamens AL, Nixon B. Analysis of the small non-protein-coding RNA profile of mouse spermatozoa reveals specific enrichment of piRNAs within mature spermatozoa. *RNA Biol* 2017; **14**:1776–1790.

Illingworth RS, Gruenwald-Schneider U, Webb S, Kerr AR, James KD, Turner DJ, Smith C, Harrison DJ, Andrews R, Bird AP. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. *PLoS Genet* 2010; **6**:e1001134.

Inawaka K, Kawabe M, Takahashi S, Doi Y, Tomigahara Y, Tarui H, Abe J, Kawamura S, Shirai T. Maternal exposure to anti-androgenic compounds, vinclozolin, flutamide and procyamidine, has no effects on spermatogenesis and DNA methylation in male rats of subsequent generations. *Toxicol Appl Pharmacol* 2009; **237**:178–187.

Ishii A, Nakamura K, Kishimoto H, Honma N, Aida J, Sawabe M, Arai T, Fujiwara M, Takeuchi F, Kato M et al. Telomere shortening with aging in the human pancreas. *Exp Gerontol* 2006; **41**:882–886.

Jarred EG, Bildsoe H, Western PS. Out of sight, out of mind? Germ cells and the potential impacts of epigenomic drugs. *F1000Res* 2018; **7**:1967.

Jenkins TG, Aston KI, Cairns B, Smith A, Carrell DT. Paternal germline aging: DNA methylation age prediction from human sperm. *BMC Genomics* 2018a; **19**:763.

Jenkins TG, Aston KI, Carrell DT. Sperm epigenetics and aging. *Transl Androl Urol* 2018b; **7**:S328–S335.

Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. *PLoS Genet* 2014; **10**:e1004458.

Jenkins TG, Carrell DT. The sperm epigenome and potential implications for the developing embryo. *Reproduction* 2012; **143**:727–734.

Jezek M, Green EM. Histone modifications and the maintenance of telomere integrity. *Cells* 2019; **8**:E199.

Jimenez-Chillaron JC, Isganaitis E, Charalambous M, Gesta S, Pentinat-Pelegrin T, Fauchette RR, Otis JP, Chow A, Diaz R, Ferguson-Smith A et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. *Diabetes* 2009; **58**:460–468.

Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. *Nat Rev Genet* 2007; **8**:253–262.

Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA, Reproductive Medicine Network. The presence, role and clinical use of spermatozoal RNAs. *Hum Reprod Update* 2013; **19**:604–624.

Johnson GD, Lalancette C, Linnemann AK, Leduc F, Boissonneault G, Krawetz SA. The sperm nucleus: chromatin, RNA, and the nuclear matrix. *Reproduction* 2011; **141**:21–36.

Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. *Nat Rev Genet* 2009; **10**:805–811.

Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. *Eur J Hum Genet* 2002; **10**:682–688.

Kafri T, Gao X, Razin A. Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. *Proc Natl Acad Sci USA* 1993; **90**:10558–10562.

Kasowski M, Kyriazopoulou-Panagiotopoulou S, Grubert F, Zaugg JB, Kundaje A, Liu Y, Boyle AP, Zhang QC, Zakharia F, Spacek DV et al. Extensive variation in chromatin states across humans. *Science* 2013; **342**:750–752.

Katen AL, Chambers CG, Nixon B, Roman SD. Chronic acrylamide exposure in male mice results in elevated DNA damage in the germline and heritable induction of CYP2E1 in the testes. *Biol Reprod* 2016; **95**:86.

Katen AL, Roman SD. The genetic consequences of paternal acrylamide exposure and potential for amelioration. *Mutat Res* 2015; **777**:91–100.

Katz DJ, Edwards TM, Reinke V, Kelly WG. *A. C. elegans* LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. *Cell* 2009; **137**:308–320.

Kearns M, Preis J, McDonald M, Morris C, Whitelaw E. Complex patterns of inheritance of an imprinted murine transgene suggest incomplete germline erasure. *Nucleic Acids Res* 2000; **28**:3301–3309.

Kiani J, Grandjean V, Liebers R, Tuorto F, Ghanbarian H, Lyko F, Cuzin F, Rassoulzadegan M. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. *PLoS Genet* 2013; **9**:e1003498.

Kilpinen H, Waszak SM, Gschwind AR, Raghav SK, Witwicki RM, Orioli A, Migliavacca E, Wiederkehr M, Gutierrez-Arcelus M, Panousis NI et al. Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. *Science* 2013; **342**: 744–747.

Kimura M, Cherkas LF, Kato BS, Demissie S, Hjelmborg JB, Brimacombe M, Cupples A, Hunkin JL, Gardner JP, Lu X et al. Offspring's leukocyte telomere length, paternal age, and telomere elongation in sperm. *PLoS Genet* 2008; **4**:e37.

Kobayashi H, Hiura H, John RM, Sato A, Otsu E, Kobayashi N, Suzuki R, Suzuki F, Hayashi C, Utsunomiya T et al. DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. *Eur J Hum Genet* 2009; **17**:1582–1591.

Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K, Hata K, Sotomaru Y et al. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. *PLoS Genet* 2012; **8**:e1002440.

Kocer A, Henry-Berger J, Noblanc A, Champroux A, Pogorelcnik R, Guiton R, Janny L, Pons-Rejraji H, Saez F, Johnson GD et al. Oxidative DNA damage in mouse sperm chromosomes: size matters. *Free Radic Biol Med* 2015; **89**:993–1002.

Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson SA, Sigurdsson A, Jonasdottir A, Jonasdottir A et al. Rate of de novo mutations and the importance of father's age to disease risk. *Nature* 2012; **488**:471–475.

Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park ES, Seo JS, Ogawa H. Birth of parthenogenetic mice that can develop to adulthood. *Nature* 2004; **428**:860–864.

Kota SK, Feil R. Epigenetic transitions in germ cell development and meiosis. *Dev Cell* 2010; **19**:675–686.

Labosky PA, Barlow DP, Hogan BL. Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. *Development* 1994; **120**:3197–3204.

Lai WKM, Pugh BF. Understanding nucleosome dynamics and their links to gene expression and DNA replication. *Nat Rev Mol Cell Biol* 2017; **18**:548–562.

Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, Reik W. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. *Genesis* 2003; **35**:88–93.

Lange UC, Schneider R. What an epigenome remembers. *Bioessays* 2010; **32**:659–668.

Larriba E, Rial E, Del Mazo J. The landscape of mitochondrial small non-coding RNAs in the PGCs of male mice, spermatogonia, gametes and in zygotes. *BMC Genomics* 2018; **19**:634.

Lavebratt C, Almgren M, Ekstrom TJ. Epigenetic regulation in obesity. *Int J Obes (Lond)* 2012; **36**:757–765.

Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. *Nat Rev Genet* 2010; **11**: 204–220.

Lee J, Inoue K, Ono R, Ogonuki N, Kohda T, Kaneko-Ishino T, Ogura A, Ishino F. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. *Development* 2002; **129**:1807–1817.

Lee KM, Ward MH, Han S, Ahn HS, Kang HJ, Choi HS, Shin HY, Koo HH, Seo JJ, Choi JE et al. Paternal smoking, genetic polymorphisms in CYPIA1 and childhood leukemia risk. *Leuk Res* 2009; **33**: 250–258.

Lees-Murdock DJ, Walsh CP. DNA methylation reprogramming in the germline. *Adv Exp Med Biol* 2008; **626**:1–15.

Lim JP, Brunet A. Bridging the transgenerational gap with epigenetic memory. *Trends Genet* 2013; **29**:176–186.

Lord T, Aitken RJ. Fertilization stimulates 8-hydroxy-2'-deoxyguanosine repair and antioxidant activity to prevent mutagenesis in the embryo. *Dev Biol* 2015; **406**:1–13.

Lutsenko E, Bhagwat AS. Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells. A model, its experimental support and implications. *Mutat Res* 1999; **437**:11–20.

Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. *Nat Rev Genet* 2018; **19**:81–92.

Maher GJ, Ralph HK, Ding Z, Koelling N, Mlcochova H, Giannoulatou E, Dhami P, Paul DS, Stricker SH, Beck S et al. Selfish mutations dysregulating RAS-MAPK signaling are pervasive in aged human testes. *Genome Res* 2018; **28**:1779–1790.

Malaspina D. Paternal factors and schizophrenia risk: de novo mutations and imprinting. *Schizophr Bull* 2001; **27**:379–393.

Manikkam M, Guerrero-Bosagna C, Tracey R, Haque MM, Skinner MK. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. *PLoS One* 2012; **7**:e31901.

Margueron R, Reinberg D. Chromatin structure and the inheritance of epigenetic information. *Nat Rev Genet* 2010; **11**:285–296.

Martin LA, Assif N, Gilbert M, Wijewarnasuriya D, Seandel M. Enhanced fitness of adult spermatogonial stem cells bearing a paternal age-associated FGFR2 mutation. *Stem Cell Reports* 2014; **3**:219–226.

Martos SN, Tang WY, Wang Z. Elusive inheritance: transgenerational effects and epigenetic inheritance in human environmental disease. *Prog Biophys Mol Biol* 2015; **118**:44–54.

Mashoodh R, Habrylo IB, Gudsnu K, Pelle G, Champagne FA. Maternal modulation of paternal effects on offspring development. *Proc Biol Sci* 2018; **285**.

Matsui Y, Zsebo K, Hogan BL. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. *Cell* 1992; **70**: 841–847.

Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. *Nature* 2000; **403**:501–502.

McVicker G, van de Geijn B, Degner JF, Cain CE, Banovich NE, Raj A, Lewellen N, Myrthil M, Gilad Y, Pritchard JK. Identification of genetic variants that affect histone modifications in human cells. *Science* 2013; **342**:747–749.

Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB et al. Genome-

scale DNA methylation maps of pluripotent and differentiated cells. *Nature* 2008; **454**:766–770.

Meyer E, Lim D, Pasha S, Tee LJ, Rahman F, Yates JR, Woods CG, Reik W, Maher ER. Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann syndrome). *PLoS Genet* 2009; **5**:e1000423.

Milekic MH, Xin Y, O'Donnell A, Kumar KK, Bradley-Moore M, Malaspina D, Moore H, Brunner D, Ge Y, Edwards J et al. Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression. *Mol Psychiatry* 2015; **20**:995–1001.

Miller D, Brinkworth M, Iles D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. *Reproduction* 2010; **139**:287–301.

Moazed D. Mechanisms for the inheritance of chromatin states. *Cell* 2011; **146**:510–518.

Monk D. Germline-derived DNA methylation and early embryo epigenetic reprogramming: the selected survival of imprints. *Int J Biochem Cell Biol* 2015; **67**:128–138.

Monk M, Boubelik M, Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. *Development* 1987; **99**: 371–382.

Moore GE, Stanier P. Fat dads must not be blamed for their children's health problems. *BMC Med* 2013; **11**:30.

Moore T, Reik W. Genetic conflict in early development: parental imprinting in normal and abnormal growth. *Rev Reprod* 1996; **1**:73–77.

Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. *Nat Genet* 1999; **23**:314–318.

Murray L, McCarron P, Bailie K, Middleton R, Davey Smith G, Dempsey S, McCarthy A, Gavin A. Association of early life factors and acute lymphoblastic leukaemia in childhood: historical cohort study. *Br J Cancer* 2002; **86**:356–361.

Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K, Matoba S, Tachibana M, Ogura A, Shinkai Y, Nakano T. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. *Nature* 2012; **486**:415–419.

Nakayama T, Takami Y. Participation of histones and histone-modifying enzymes in cell functions through alterations in chromatin structure. *J Biochem* 2001; **129**:491–499.

Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. *Cell* 2002; **108**: 475–487.

Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. *Nature* 2010; **467**:963–966.

Nilsson E, King SE, McBirney M, Kubsad D, Pappalardo M, Beck D, Sadler-Riggleman I, Skinner MK. Vinclozolin induced epigenetic transgenerational inheritance of pathologies and sperm epimutation biomarkers for specific diseases. *PLoS One* 2018a; **13**:e0202662.

Nilsson E, Klukovich R, Sadler-Riggleman I, Beck D, Xie Y, Yan W, Skinner MK. Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: ancestral origins of polycystic ovarian syndrome and primary ovarian insufficiency. *Epigenetics* 2018b; **13**:875–895.

Nilsson EE, Anway MD, Stanfield J, Skinner MK. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease. *Reproduction* 2008; **135**:713–721.

Nilsson EE, Sadler-Riggleman I, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease. *Environ Epigenet* 2018c; **4**:dvy016.

Nixon B, Stanger SJ, Mihalas BP, Reilly JN, Anderson AL, Tyagi S, Holt JE, McLaughlin EA. The microRNA signature of mouse spermatozoa is substantially modified during epididymal maturation. *Biol Reprod* 2015; **93**:91.

Nixon BJ, Stanger SJ, Nixon B, Roman SD. Chronic exposure to acrylamide induces DNA damage in male germ cells of mice. *Toxicol Sci* 2012; **129**:135–145.

Njajou OT, Cawthon RM, Damcott CM, Wu SH, Ott S, Garant MJ, Blackburn EH, Mitchell BD, Shuldiner AR, Hsueh WC. Telomere length is paternally inherited and is associated with parental lifespan. *Proc Natl Acad Sci USA* 2007; **104**:12135–12139.

Noblanc A, Damon-Soubeyrand C, Karrich B, Henry-Berger J, Cadet R, Saez F, Guiton R, Janny L, Pons-Rejraji H, Alvarez JG et al. DNA oxidative damage in mammalian spermatozoa: where and why is the male nucleus affected? *Free Radic Biol Med* 2013; **65**:719–723.

Nordfjall K, Larefalk A, Lindgren P, Holmberg D, Roos G. Telomere length and heredity: indications of paternal inheritance. *Proc Natl Acad Sci USA* 2005; **102**:16374–16378.

Ohno M, Sakumi K, Fukumura R, Furuichi M, Iwasaki Y, Hokama M, Ikemura T, Tsuzuki T, Gondo Y, Nakabeppu Y. 8-oxoguanine causes spontaneous de novo germline mutations in mice. *Sci Rep* 2014; **4**:4689.

Okae H, Chiba H, Hiura H, Hamada H, Sato A, Utsunomiya T, Kikuchi H, Yoshida H, Tanaka A, Suyama M et al. Genome-wide analysis of DNA methylation dynamics during early human development. *PLoS Genet* 2014; **10**:e1004868.

Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J. Active demethylation of the paternal genome in the mouse zygote. *Curr Biol* 2000; **10**:475–478.

Palm W, de Lange T. How shelterin protects mammalian telomeres. *Annu Rev Genet* 2008; **42**:301–334.

Passos JF, von Zglinicki TM. Telomeres and cell senescence. *Exp Gerontol* 2005; **40**:466–472.

Paszkowski J, Grossniklaus U. Selected aspects of transgenerational epigenetic inheritance and resetting in plants. *Curr Opin Plant Biol* 2011; **14**:195–203.

Patel DJ, Wang Z. Readout of epigenetic modifications. *Annu Rev Biochem* 2013; **82**:81–118.

Peaston AE, Whitelaw E. Epigenetics and phenotypic variation in mammals. *Mamm Genome* 2006; **17**:365–374.

Peat JR, Dean W, Clark SJ, Krueger F, Smallwood SA, Ficz G, Kim JK, Marioni JC, Hore TA, Reik W. Genome-wide bisulfite sequencing in zygotes identifies demethylation targets and maps the contribution of TET3 oxidation. *Cell Rep* 2014; **9**:1990–2000.

Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjostrom M, Golding J, Team AS. Sex-specific, male-line transgenerational responses in humans. *Eur J Hum Genet* 2006; **14**:159–166.

Pentinat T, Ramon-Krauel M, Cebria J, Diaz R, Jimenez-Chillaron JC. Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. *Endocrinology* 2010; **151**:5617–5623.

Perez MF, Lehner B. Intergenerational and transgenerational epigenetic inheritance in animals. *Nat Cell Biol* 2019; **21**:143–151.

Petersen L, Mortensen PB, Pedersen CB. Paternal age at birth of first child and risk of schizophrenia. *Am J Psychiatry* 2011; **168**:82–88.

Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, Jacobsen SE, Reik W. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. *Nature* 2010; **463**:1101–1105.

Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. *Nat Rev Mol Cell Biol* 2009; **10**:192–206.

Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E. Metastable epialleles in mammals. *Trends Genet* 2002; **18**:348–351.

Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KV, Whitelaw E. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. *Proc Natl Acad Sci USA* 2003; **100**:2538–2543.

Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. *Nature* 2006; **441**:469–474.

Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. *J Biol Chem* 2008; **283**:13611–13626.

Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. *Nature* 2007; **447**:425–432.

Reik W, Walter J. Genomic imprinting: parental influence on the genome. *Nat Rev Genet* 2001; **2**:21–32.

Rivera RM, Ross JW. Epigenetics in fertilization and preimplantation embryo development. *Prog Biophys Mol Biol* 2013.

Roberts AR, Huang E, Jones L, Daxinger L, Chong S, Whitelaw E. Non-telomeric epigenetic and genetic changes are associated with the inheritance of shorter telomeres in mice. *Chromosoma* 2013; **122**:541–554.

Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. *Proc Natl Acad Sci USA* 2015; **112**:13699–13704.

Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. *Early Hum Dev* 2006; **82**:485–491.

Rougier N, Bourc'his D, Gomes DM, Niveleau A, Plachot M, Paldi A, Viegas-Pequignot E. Chromosome methylation patterns during mammalian preimplantation development. *Genes Dev* 1998; **12**:2108–2113.

Russel LB, Hunsicker PR, Cacheiro NL, Generoso WM. Induction of specific locus mutations in male germ cells of the mouse by acrylamide monomer. *Mutat Res* 1991; **262**:101–107.

Sabour D, Scholer HR. Reprogramming and the mammalian germline: the Weismann barrier revisited. *Curr Opin Cell Biol* 2012; **24**:716–723.

Sakamoto J, Hashimoto K. Reproductive toxicity of acrylamide and related-compounds in mice - effects on fertility and sperm morphology. *Archives of Toxicology* 1986; **59**:201–205.

Salian S, Doshi T, Vanage G. Impairment in protein expression profile of testicular steroid receptor coregulators in male rat offspring perinatally exposed to Bisphenol a. *Life Sci* 2009; **85**:11–18.

Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. *Dev Biol* 2002; **241**:172–182.

Santos F, Peters AH, Otte AP, Reik W, Dean W. Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. *Dev Biol* 2005; **280**:225–236.

Sapienza C, Peterson AC, Rossant J, Balling R. Degree of methylation of transgenes is dependent on gamete of origin. *Nature* 1987; **328**:251–254.

Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH. Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. *J Biol Chem* 2002; **277**:39195–39201.

Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. *Nat Rev Genet* 2008; **9**:129–140.

Schmid TE, Eskenazi B, Baumgartner A, Marchetti F, Young S, Weldon R, Anderson D, Wyrobek AJ. The effects of male age on sperm DNA damage in healthy non-smokers. *Hum Reprod* 2007; **22**:180–187.

Schmitz RJ, Ecker JR. Epigenetic and epigenomic variation in *Arabidopsis thaliana*. *Trends Plant Sci* 2012; **17**:149–154.

Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR. Transgenerational epigenetic instability is a source of novel methylation variants. *Science* 2011; **334**:369–373.

Schneider S, Kaufmann W, Buesen R, van Ravenzwaay B. Vinclozolin—the lack of a transgenerational effect after oral maternal exposure during organogenesis. *Reprod Toxicol* 2008; **25**:352–360.

Schones DE, Zhao K. Genome-wide approaches to studying chromatin modifications. *Nat Rev Genet* 2008; **9**:179–191.

Schuster-Bockler B, Lehner B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. *Nature* 2012; **488**:504–507.

Sega GA, Generoso EE. Measurement of DNA breakage in specific germcell stages of male mice exposed to acrylamide, using an alkaline-elution procedure. *Mutat Res* 1990; **242**:79–87.

Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. *Mol Cell* 2012; **48**:849–862.

Selvaratnam J, Paul C, Robaire B. Male rat germ cells display age-dependent and cell-specific susceptibility in response to oxidative stress challenges. *Biol Reprod* 2015; **93**:72.

Sharma A. Transgenerational epigenetic inheritance: focus on soma to germline information transfer. *Prog Biophys Mol Biol* 2012; **113**:439–446.

Shelby MD, Cain KT, Hughes LA, Braden PW, Generoso WM. Dominant lethal effects of acrylamide in male mice. *Mutat Res* 1986; **173**:35–40.

Shin J, Bossenz M, Chung Y, Ma H, Byron M, Taniguchi-Ishigaki N, Zhu X, Jiao B, Hall LL, Green MR et al. Maternal Rnf12/RLIM is required for imprinted X-chromosome inactivation in mice. *Nature* 2010; **467**:977–981.

Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4-K16 acetylation controls chromatin structure and protein interactions. *Science* 2006; **311**:844–847.

Skinner MK. Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. *Epigenetics* 2011; **6**:838–842.

Skinner MK, Guerrero-Bosagna C. Role of CpG deserts in the epigenetic transgenerational inheritance of differential DNA methylation regions. *BMC Genomics* 2014; **15**:692.

Skinner MK, Guerrero-Bosagna C, Haque MM. Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. *Epigenetics* 2015; **10**:762–771.

Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. *Trends Endocrinol Metab* 2010; **21**:214–222.

Skvortsova K, Iovino N, Bogdanovic O. Functions and mechanisms of epigenetic inheritance in animals. *Nat Rev Mol Cell Biol* 2018; **19**:774–790.

Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K, Andrews SR, Kelsey G. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. *Nat Genet* 2011; **43**:811–814.

Smith TB, De Iuliis GN, Lord T, Aitken RJ. The senescence-accelerated mouse prone 8 as a model for oxidative stress and impaired DNA repair in the male germline. *Reproduction* 2013a; **146**: 253–262.

Smith TB, Dun MD, Smith ND, Curry BJ, Connaughton HS, Aitken RJ. The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. *J Cell Sci* 2013b; **126**:1488–1497.

Smith ZD, Chan MM, Humm KC, Karnik R, Mekhoubad S, Regev A, Eggan K, Meissner A. DNA methylation dynamics of the human preimplantation embryo. *Nature* 2014; **511**:611–615.

Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, Meissner A. A unique regulatory phase of DNA methylation in the early mammalian embryo. *Nature* 2012; **484**:339–344.

Stein AD, Lumey LH. The relationship between maternal and offspring birth weights after maternal prenatal famine exposure: the Dutch famine birth cohort study. *Hum Biol* 2000; **72**:641–654.

Stimpfel M, Jancar N, Virant-Klun I. New challenge: mitochondrial epigenetics? *Stem Cell Rev* 2018; **14**:13–26.

Surani MA, Hayashi K, Hajkova P. Genetic and epigenetic regulators of pluripotency. *Cell* 2007; **128**:747–762.

Suter CM, Martin DI, Ward RL. Germline epimutation of MLH1 in individuals with multiple cancers. *Nat Genet* 2004; **36**:497–501.

Sutherland HG, Kearns M, Morgan HD, Headley AP, Morris C, Martin DI, Whitelaw E. Reactivation of heritably silenced gene expression in mice. *Mamm Genome* 2000; **11**:347–355.

Tada T, Tada M, Hilton K, Barton SC, Sado T, Takagi N, Surani MA. Epigenotype switching of imprintable loci in embryonic germ cells. *Dev Genes Evol* 1998; **207**:551–561.

Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. *J Pathol* 2010; **220**:126–139.

Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, Oxley D, Santos F, Clarke J, Mansfield W et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. *Cell* 2014; **158**:1254–1269.

Talens RP, Christensen K, Putter H, Willemsen G, Christiansen L, Kremer D, Suchiman HE, Slagboom PE, Boomsma DI, Heijmans BT. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. *Aging Cell* 2012; **11**:694–703.

Tang MH, Varadarajan V, Kamalakaran S, Zhang MQ, Dimitrova N, Hicks J. Major chromosomal breakpoint intervals in breast cancer co-localize with differentially methylated regions. *Front Oncol* 2012; **2**:197.

Teixeira FK, Heredia F, Sarazin A, Roudier F, Boccara M, Ciaudo C, Cruaud C, Poulain J, Berdasco M, Fraga MF et al. A role for RNAi in the selective correction of DNA methylation defects. *Science* 2009; **323**:1600–1604.

Teranishi T, Tanaka M, Kimoto S, Ono Y, Miyakoshi K, Kono T, Yoshimura Y. Rapid replacement of somatic linker histones with the oocyte-specific linker histone H1foo in nuclear transfer. *Dev Biol* 2004; **266**:76–86.

Tiemann-Boege I, Navidi W, Grewal R, Cohn D, Eskenazi B, Wyrobek AJ, Arnheim N. The observed human sperm mutation frequency cannot explain the achondroplasia paternal age effect. *Proc Natl Acad Sci USA* 2002; **99**:14952–14957.

Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. *Hum Mol Genet* 2009; **18**:4046–4053.

Trigg NA, Eamens AL, Nixon B. The contribution of epididymosomes to the sperm small RNA profile. *Reproduction* 2019; **157**:R209–R223.

Vasa-Nicotera M, Brouilette S, Mangino M, Thompson JR, Braund P, Clemmitson JR, Mason A, Bodcote CL, Raleigh SM, Louis E et al. Mapping of a major locus that determines telomere length in humans. *Am J Hum Genet* 2005; **76**:147–151.

Von Tungeln LS, Churchwell MI, Doerge DR, Shaddock JG, McGarry LJ, Heflich RH, Gamboa da Costa G, Marques MM, Beland FA. DNA adduct formation and induction of micronuclei and mutations in B6C3F1/Tk mice treated neonatally with acrylamide or glycideamide. *Int J Cancer* 2009; **124**:2006–2015.

Von Tungeln LS, Doerge DR, Gamboa da Costa G, Matilde Marques M, Witt VM, Koturbash I, Pogribny IP, Beland FA. Tumorigenicity of acrylamide and its metabolite glycideamide in the neonatal mouse bioassay. *Int J Cancer* 2012; **131**:2008–2015.

Waalkes MP, Liu J, Chen H, Xie Y, Achanzar WE, Zhou YS, Cheng ML, Diwan BA. Estrogen signaling in livers of male mice with hepatocellular carcinoma induced by exposure to arsenic in utero. *J Natl Cancer Inst* 2004; **96**:466–474.

Waddington CH. The epigenotype. *Endeavour* 1942; 18–20.

Waddington CH. Genetic assimilation of an acquired character. *Evolution* 1953; 118–126.

Wang CM, Tsai SN, Yew TW, Kwan YW, Ngai SM. Identification of histone methylation multiplicities patterns in the brain of senescence-accelerated prone mouse 8. *Biogerontology* 2010; **11**:87–102.

Wang J, Wu Z, Li D, Li N, Dindot SV, Satterfield MC, Bazer FW, Wu G. Nutrition, epigenetics, and metabolic syndrome. *Antioxid Redox Signal* 2012; **17**:282–301.

Wang T, Wu H, Li Y, Szulwach KE, Lin L, Li X, Chen IP, Goldlust IS, Chamberlain SJ, Dodd A et al. Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency. *Nat Cell Biol* 2013; **15**: 700–711.

Wang Y, Yuan Q, Xie L. Histone modifications in aging: the underlying mechanisms and implications. *Curr Stem Cell Res Ther* 2018; **13**:125–135.

Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. *Biol Reprod* 1991; **44**:569–574.

Waterland RA, Kellermayer R, Laritsky E, Rayco-Solon P, Harris RA, Travisano M, Zhang W, Torskaya MS, Zhang J, Shen L et al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. *PLoS Genet* 2010; **6**:e1001252.

Weaver JR, Susiarjo M, Bartolomei MS. Imprinting and epigenetic changes in the early embryo. *Mamm Genome* 2009; **20**:532–543.

Weigel D, Colot V. Epialleles in plant evolution. *Genome Biol* 2012; **13**:249.

Weintraub H, Groudine M. Chromosomal subunits in active genes have an altered conformation. *Science* 1976; **193**:848–856.

Western PS. Epigenomic drugs and the germline: collateral damage in the home of heritability? *Mol Cell Endocrinol* 2018; **468**:121–133.

Willeit P, Willeit J, Mayr A, Weger S, Oberhollenzer F, Brandstatter A, Kronenberg F, Kiechl S. Telomere length and risk of incident cancer and cancer mortality. *JAMA* 2010; **304**:69–75.

Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. *Biochim Biophys Acta* 2007; **1775**:138–162.

Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. *Nat Rev Mol Cell Biol* 2010; **11**:607–620.

Xie K, Ryan DP, Pearson BL, Henzel KS, Neff F, Vidal RO, Hennion M, Lehmann I, Schleif M, Schroder S et al. Epigenetic alterations in longevity regulators, reduced life span, and exacerbated aging-related pathology in old father offspring mice. *Proc Natl Acad Sci U S A* 2018; **115**:E2348–E2357.

Xu M, Long C, Chen X, Huang C, Chen S, Zhu B. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. *Science* 2010; **328**:94–98.

Xu M, Wang W, Chen S, Zhu B. A model for mitotic inheritance of histone lysine methylation. *EMBO Rep* 2012; **13**:60–67.

Xue Y, Chen Y, Ayub Q, Huang N, Ball EV, Mort M, Phillips AD, Shaw K, Stenson PD, Cooper DN et al. Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. *Am J Hum Genet* 2012; **91**:1022–1032.

Yamagata Y, Szabo P, Szuts D, Bacquet C, Aranyi T, Paldi A. Rapid turnover of DNA methylation in human cells. *Epigenetics* 2012; **7**:141–145.

Yang P, Wu W, Macfarlan TS. Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. *Bioessays* 2015; **37**:52–59.

Yehezkel S, Rebibo-Sabbah A, Segev Y, Tzukerman M, Shaked R, Huber I, Gepstein L, Skorecki K, Selig S. Reprogramming of telomeric regions during the generation of human induced pluripotent stem cells and subsequent differentiation into fibroblast-like derivatives. *Epigenetics* 2011; **6**:63–75.

You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? *Cancer Cell* 2012; **22**:9–20.

Yuan S, Schuster A, Tang C, Yu T, Ortogero N, Bao J, Zheng H, Yan W. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. *Development* 2016; **143**:635–647.

Zalenskaya IA, Zalensky AO. Telomeres in mammalian male germline cells. *Int Rev Cytol* 2002; **218**:37–67.

Zenick H, Hope E, Smith MK. Reproductive toxicity associated with acrylamide treatment in male and female rats. *J Toxicol Environ Health* 1986; **17**:457–472.

Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. *Nat Struct Mol Biol* 2013; **20**:259–266.

Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X, Ming J, Wu X, Zhang Y, Xu Q et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. *Nature* 2016; **537**:553–557.

Zhang ZX, Wang Y, Tao ZZ, Chen SM, Xiao BK, Zhou T. Subtelomeric demethylation deregulated hTERT expression, telomerase activity, and telomere length in four nasopharyngeal carcinoma cell lines. *Cancer Biother Radiopharm* 2014; **29**:289–294.

Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. *Nat Rev Genet* 2011; **12**:7–18.

Ziech D, Franco R, Pappa A, Malamou-Mitsi V, Georgakila S, Georgakilas AG, Panayiotidis MI. The role of epigenetics in environmental and occupational carcinogenesis. *Chem Biol Interact* 2010; **188**:340–349.

Ziech D, Franco R, Pappa A, Panayiotidis MI. Reactive oxygen species (ROS)-induced genetic and epigenetic alterations in human carcinogenesis. *Mutat Res* 2011; **711**:167–173.

Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. *Hum Reprod* 2008; **23**:2663–2668.