

Δείκτες νοημοσύνης και γενετική προδιάθεση

George Dedoussis Professor of Human Biology

Investigating the effects of copy number variants on reading and language performance

Alessandro Gialluisi^{1,2}, Alessia Visconti³, Erik G. Willcutt^{4,5}, Shelley D. Smith⁶, Bruce F. Pennington⁷, Mario Falchi³, John C. DeFries^{4,5}, Richard K. Olson^{4,5}, Clyde Francks^{1,8*} and Simon E. Fisher^{1,8*}

In a dataset of children recruited for a history of reading disability (RD, also known as **dyslexia**) or attention deficit hyperactivity disorder (**ADHD**) and their siblings, they investigated the effects of CNVs on **reading and language performance**.

Reading disability (RD or developmental dyslexia) and specific language impairment (SLI) are two of the most prevalent neurodevelopmental disorders, with a prevalence of $\approx 5-8$ % among school-aged children

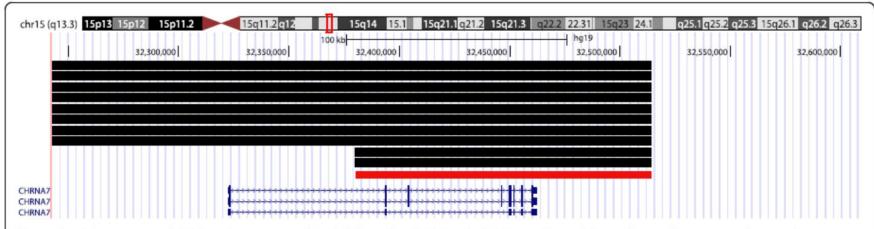
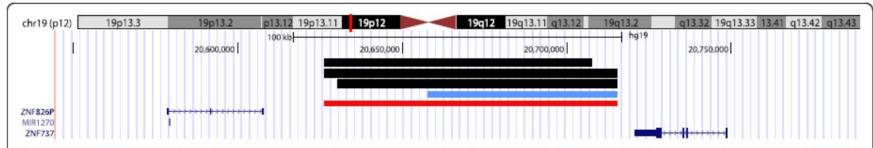



Fig. 2 Candidate region of CNV overlap associated with PC1 in the GWAS with CNV state. The *red line* indicates the associated interval chr15:32,380,064-32,514,341, partially overlapping *CHRNAT* (15q13.3). *Black horizontal lines* represent the individual CNV calls detected in this region (nine heterozygous duplications and one heterozygous deletion; see Additional file 2: Table S2e for details)

Nicotinic cholinergic receptors are ligand-gated ion channels that mediate fast signal transmission at synapses and are ubiquitously expressed in the CNS. Several studies have suggested a possible involvement of **CHRNA7** in language skills.

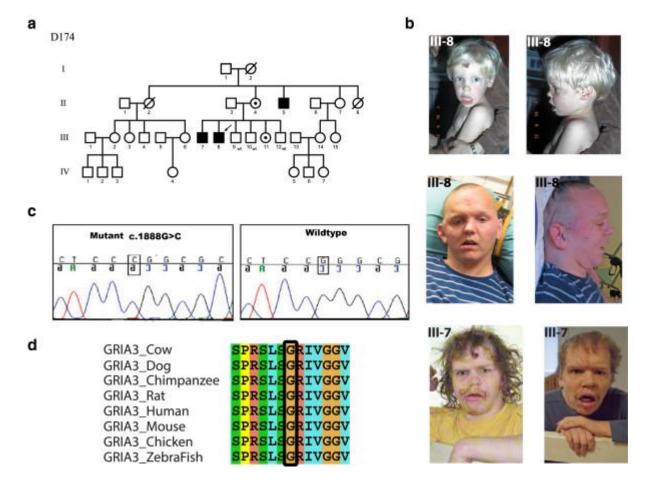
The 15q13.3 region is also a hotspot of neuropsychiatric CNVs, which have been implicated in several disorders including SCZ, ASD, ADHD, and epilepsy

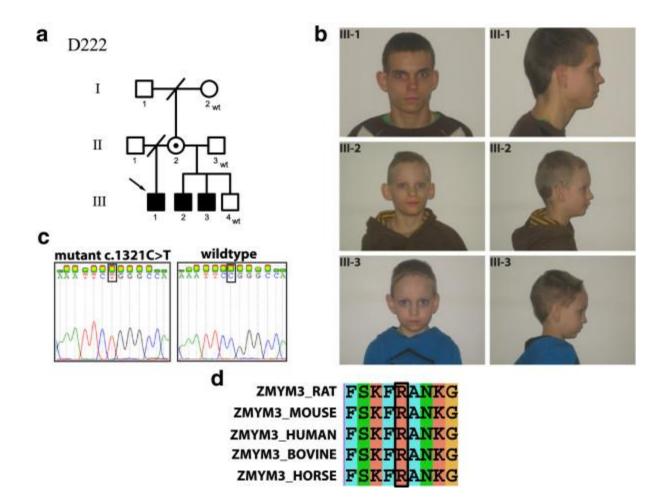
Fig. 3 19p12 region associated with PC traits in the GWAS with probe intensity data. The *blue line* indicates the interval of association with probe intensity data (chr19:20,657,781-20,715,228), while the *red line* indicates the overlapping region of association between CNV state and PC scores (chr19:20,626,179-20,715,228). *Black horizontal lines* represent the three types of deletions detected in this region (reported in Additional file 2: Table S2g)

Zinc finger protein 737 has not been functionally characterized, but the presence of a zinc finger domain suggests a possible involvement in transcriptional regulation. Interestingly, a microdeletion within another zinc finger gene, ZNF277, has been suggested as susceptibility CNV for SLI

Several of the candidate genes are known to have roles in important processes in **central nervous system (CNS) development**, such as neuronal migration, axonal guidance, and neurite outgrowth

Conclusions


These data suggest that CNVs **do not** underlie a substantial proportion of variance in reading and language skills.

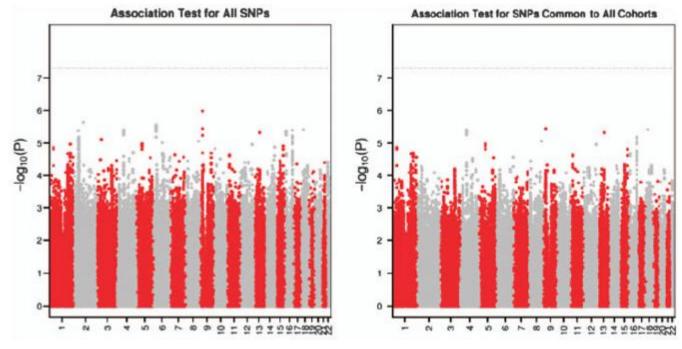


Novel Missense Mutation A789V in IQSEC2 Underlies X-Linked Intellectual Disability in the MRX78 Family

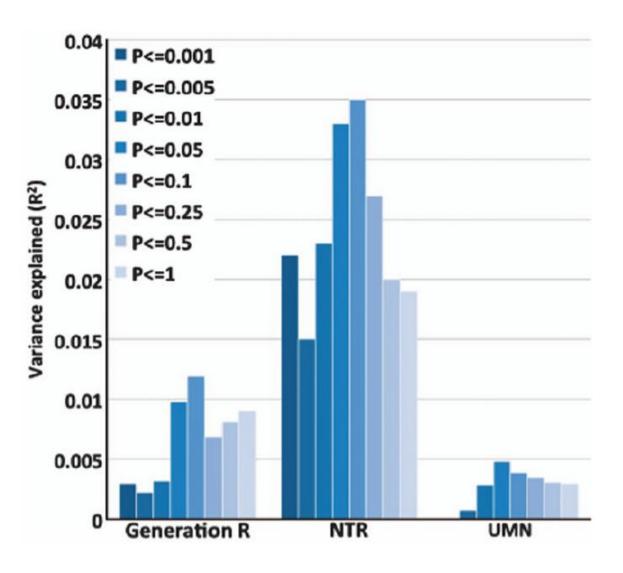
Vera M. Kalscheuer^{1,2}*, Victoria M. James³, Miranda L. Himelright⁴, Philip Long³, Renske Oegema⁵, Corinna Jensen¹, Melanie Bienek¹, Hao Hu¹, Stefan A. Haas⁶, Maya Topf⁷, A. Jeannette M. Hoogeboom⁵, Kirsten Harvey³, Randall Walikonis⁴ and Robert J. Harvey³*

Intellectual disability (ID) is a developmental brain disorder characterized by impaired intellectual and adaptive functions, and can be defined by an IQ below 70 and limitations in intellectual functioning and adaptive behaviours. As a result of the excess in males affected by ID, and the identification of families where ID shows clear X-linked segregation, significant attention has focused on the genetics of X-linked intellectual disability (XLID)—a common, clinically and genetically complex disorder often arising from mutations in one of >100 genes on the X chromosome.

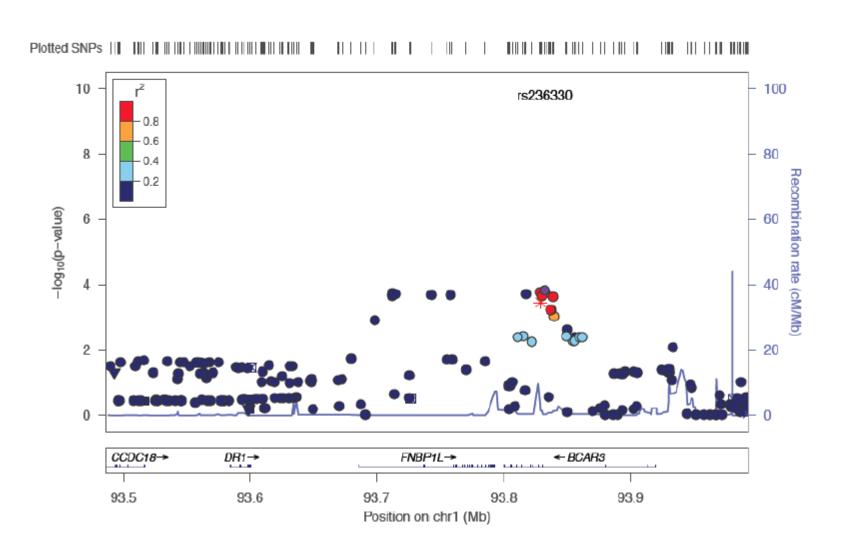
Kalscheuer et al. IQSEC2 Mutation in MRX78


TABLE 1 | Summary of clinical features present in affected males and females in the MRX78 family.

Subject	Gender	Intellectual disability	Epilepsy	Behavioral problems
I-2	F	Mild, illiterate	_	-
II-2	F	Mild	_	_
II-6	F	Present	_	_
II-7	M	Learning difficulties*	_	_
II-8	F	Mild	_	_
II-9	M	Severe, does not speak	Present	Does not interact socially
III-1	M	Severe, does not speak	One seizure as a teenager	Aggressive against others
III-2	M	Severe, does not speak	_	Aggressive against others
III-3	M	Moderate	_	_
III-4	F	Learning difficulties	_	_
III-5	M	Moderate-severe	Diffuse encephalopathy without	Occasional verbal aggression, suspected of
			epileptic discharge	ASD but not formally tested
III-6	F	Learning difficulties	_	_
III-8	М	Severe	-	Pervasive developmental disorder, ASD, severe aggressive outbursts against objects
IV-1	F	Learning difficulties	_	_


Although originally described as non-syndromic XLID, newly acquired clinical data from the MRX78 family suggests that additional features might be associated with the IQSEC2p.A789V mutation, including variable seizures in males, which is consistent with other reports, and behavioral disturbances in five out of six affected males. By contrast, heterozygous female have learning disabilities. As IQSEC2 is one of the few genes that escapeX-inactivation in females with an expression level similar in males and females

Childhood intelligence is heritable, highly polygenic and associated with *FNBP1L*


B Benyamin^{1,2,26}, BSt Pourcain^{3,26}, OS Davis^{4,26}, G Davies^{5,26}, NK Hansell², M-JA Brion^{3,6}, RM Kirkpatrick⁷, RAM Cents^{8,9}, S Franić¹⁰, MB Miller⁷, CMA Haworth⁴, E Meaburn¹¹, TS Price⁴, DM Evans³, N Timpson³, J Kemp³, S Ring³, W McArdle³, SE Medland², J Yang¹², SE Harris^{13,14}, DC Liewald^{5,14}, P Scheet¹⁰, X Xiao¹⁵, JJ Hudziak¹⁶, EJC de Geus¹⁰, Wellcome Trust Case Control Consortium 2 (WTCCC2), VWV Jaddoe^{8,17,18}, JM Starr^{14,19}, FC Verhulst⁹, C Pennell⁶, H Tiemeier^{9,17,20}, WG Iacono⁷, LJ Palmer^{21,22}, GW Montgomery², NG Martin², DI Boomsma¹⁰, D Posthuma^{9,23,24}, M McGue^{7,25}, MJ Wright², G Davey Smith^{3,27}, IJ Deary^{5,14,27}, R Plomin^{4,27}, and PM Visscher^{1,2,12,14,27}

Cohort	N	h ² (s.e.)	P-value			
ALSPAC	5517	0.46 (0.06)	3.9×10^{-15}			
TEDS	2794	0.22 (0.10)	0.014			
UMN	1736	0.40 (0.21)	0.028			

Supplementary Figure 6. Association P-values around FNBP1L, the most significantly associated gene from gene-based analysis

www.nature.com/mp

ORIGINAL ARTICLE

A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence

SL Spain^{1,8}, I Pedroso^{1,8}, N Kadeva¹, MB Miller², WG Iacono², M McGue², E Stergiakouli³, GD Smith³, M Putallaz⁴, D Lubinski⁵, EL Meaburn⁶, R Plomin⁷ and MA Simpson¹

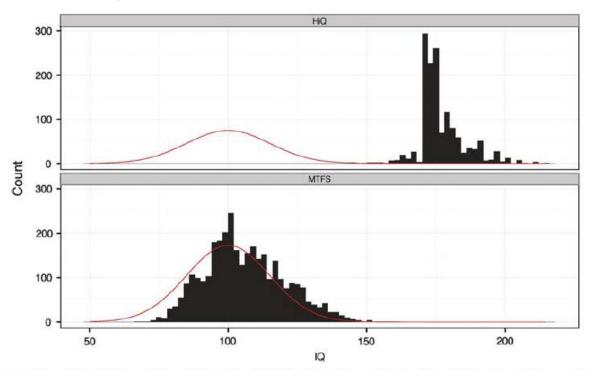


Figure 1. Extreme sampling of the high cognitive ability cohort. Distribution of general cognitive ability, measured on a standardised IQ scale (mean 100, s.d. 15), of the high cognitive ability cohort (HiQ, n = 1409, top panel) and the control cohort (MTFS, n = 3253, lower panel). The red lines illustrate the expected distribution of IQ scores with unbiased sampling.

A novel feature of this study is its focus on low frequency protein-coding variants in exons rather than genome-wide common variants.

They undertook a threshold-selected case—control study by obtaining DNA from individuals representing approximately the **top 0.03% of the intelligence** distribution and comparing them with controls drawn from an unselected population cohort.

High-intelligence cases (HiQ). Individuals were recruited from the Duke University Talent Identification Program (TIP), a non-profit organisation established in 1980 and dedicated to identifying and fostering the development of academically gifted children35 (http://www.tip.duke.edu)

The most strongly associated SNP was a missense variant located in PLXNB2 (neuronal migration) at 22q13 (rs28379706, c.A952G, p.K318E; PCC = 1.31 \times 10-5, beta =- 0.04 \pm 0.009, odds ratio = 0.76 (0.69–0.83)), which explains an estimated **0.16%** of the variance.

The results suggest that the genotyped proteinaltering SNPs (or non-coding variants that they are tagging) explain **17.4%** of the variance in intelligence on the liability scale.

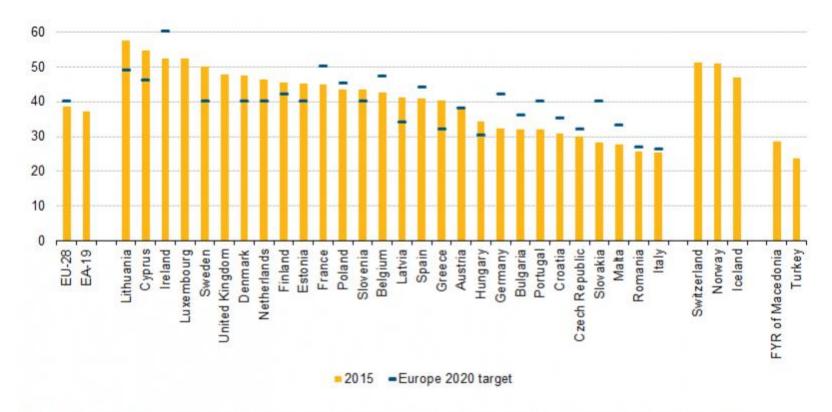
Definition

Educational attainment refers to the highest level of schooling that a person has reached. At the primary and secondary school level, **educational attainment** refers to the number of grades completed. At the postsecondary level, it refers to institutions attended and certificates, degrees or diplomas obtained.

Educational attainment is the visible output of education systems and a measure of their success. For individuals, achievement levels have a major impact, both personally and professionally, on the quality of life and job opportunities.

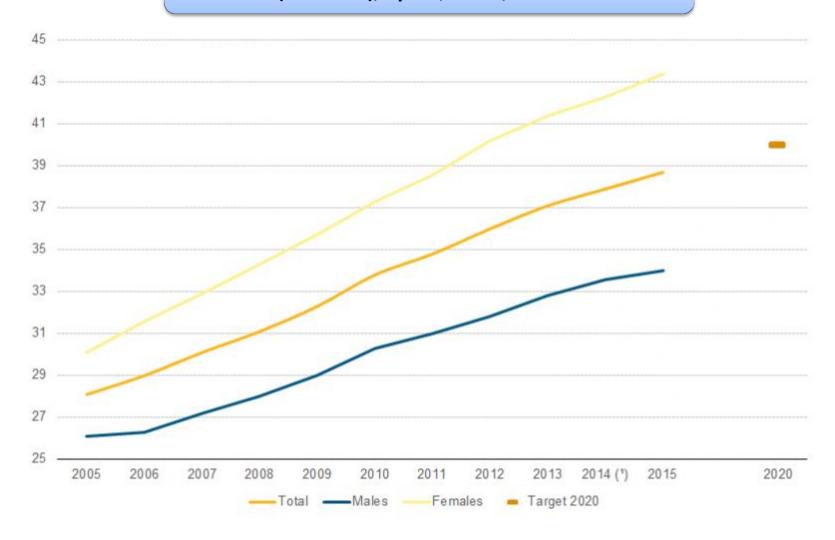
International Standard Classification of Education (ISCED)

The International Standard Classification of Education (ISCED) was developed by **UNESCO** to facilitate comparisons of education statistics and indicators across countries on the basis of uniform and internationally agreed definitions.


ISCED levels

ISCED 1997	ISCED 2011
	0 Early childhood education
	01 Early childhood educational development (designed for children aged under 3 years)
0 Pre-primary	02 Pre-primary
(designed for children aged 3 years and above)	(designed for children aged 3 years and above)
1 Primary (or 1st stage of basic education)	1 Primary
2 Lower secondary (or 2nd stage of basic education)	2 Lower secondary
3 Upper secondary	3 Upper secondary
4 Post-secondary non-tertiary	4 Post-secondary non-tertiary
5 First stage of tertiary	5 Short cycle tertiary
	6 Bachelor's or equivalent level
	7 Master's or equivalent level
6 Second stage of tertiary	8 Doctoral or equivalent level

Educational attainment levels of the population have improved significantly over the last thirty years. In 2015, 79.1 % of people aged 25-54 in the EU-28 had at attained an least upper secondary level of education, compared with 62.6 % of those aged 55-74. Those with tertiary educational attainment amounted to 32.6 % of those aged 25-54 and 20 % of those aged 55-74


		25-54 years		55-74 years						
	Low	Medium	High	Low	Medium	High				
	(ISCED 0-2)	(ISCED 3-4)	(ISCED 5-8)	(ISCED 0-2)	(ISCED 3-4)	(ISCED 5-8)				
EU-28	20.8	46.5	32.6	37.4	42.6	20.0				
EA-19	23.8	44.6	31.6	41.8	38.5	19.7				
Belgium	20.9	39.1	40.0	44.4	31.0	24.7				
Bulgaria	16.9	54.2	28.9	27.8	51.4	20.8				
Czech Republic	5.2	70.3	24.5	13.7	72.9	13.4				
Denmark	17.1	43.1	39.8	30.6	43.1	26.3				
Germany	12.9	58.7	28.3	16.2	59.3	24.5				
Estonia	9.2	51.9	38.9	12.1	52.5	35.3				
Ireland	15.6	37.6	46.8	45.9	30.7	23.3				
Greece	24.2	44.2	31.7	56.8	26.4	16.8				
Spain	38.1	23.5	38.4	66.7	14.0	19.3				
France	18.3	43.7	38.0	39.8	39.5	20.6				
Croatia	12.5	62.5	25.0	33.1	49.7	17.2				
Italy	36.3	44.6	19.1	61.1	28.5	10.4				
Cyprus	17.4	37.8	44.8	47.5	31.8	20.6				
Latvia	10.3	55.9	33.8	13.9	63.3	22.8				
Lithuania	6.8	51.5	41.7	13.8	60.3	25.9				
Luxembourg	21.9	33.4	44.7	34.3	39.8	25.9				
Hungary	14.9	58.6	26.5	28.1	55.2	16.7				
Malta	50.4	26.6	23.0	77.8	13.8	8.5				
Netherlands	19.9	42.1	38.1	40.0	35.5	24.5				
Austria	13.1	53.9	33.1	26.2	53.7	20.1				
Poland	7.2	60.0	32.7	20.3	65.8	13.9				
Portugal	48.4	25.6	26.0	80.7	8.8	10.5				
Romania	21.9	58.5	19.6	45.3	46.6	8.1				
Slovenia	9.9	56.2	33.9	25.1	56.5	18.4				
Slovakia	6.9	69.6	23.5	17.3	69.3	13.4				
Finland	9.6	45.4	45.0	27.8	39.0	33.2				
Sweden	13.1	44.2	42.7	29.0	42.6	28.4				
United Kingdom	18.5	37.7	43.8	29.4	38.7	31.9				
Iceland	22.9	35.1	42.0	37.1	38.0	24.9				
Norway	16.8	37.2	46.1	20.6	49.5	29.9				
Switzerland	10.8	44.8	44.4	17.2	53.5	29.3				
FYR of Macedonia	31.0	48.8	20.2	47.4	38.1	14.5				
Turkey	62.7	19.1	18.2	84.3	8.2	7.5				

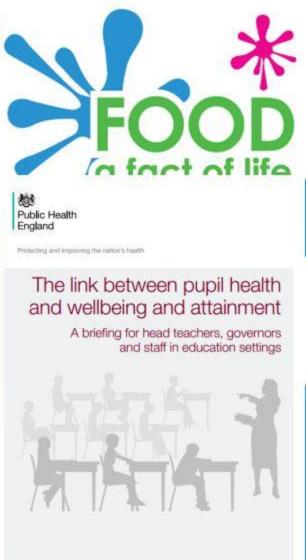
(¹) In the cases where the national target has been set within a range between two possible values, the lower level has been taken. The United Kingdom did not set a specific Europe 2020 target.

(2)The national target for Luxembourg is 66%.

Population aged 30-34 with tertiary educational attainment (ISCED 5-8), by sex, EU-28, 2005-15

The first 9 months can shape the rest of your life......

Critical periods before and during pregnancy when specific nutrients are needed for optimal development.


Risks of a number of chronic diseases in adulthood such as hypertension, diabetes, heart disease may have their origins before birth.

The link between pupil health and wellbeing and attainment

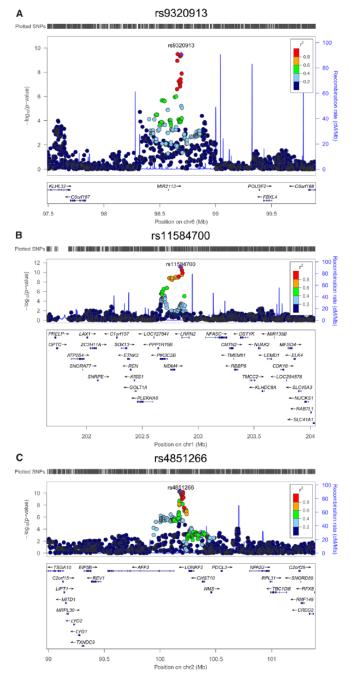
Research evidence shows that education and health are closely linked.

So promoting the health and wellbeing of pupils and students within schools and colleges has the potential to improve their educational outcomes and their health and wellbeing outcomes.

November 2014

https://www.c the-link-betv and-attainm nment/publications/ alth-and-wellbeing-

 Estimates suggest that around 40% of the variance in educational attainment is explained by genetic factors. Furthermore, educational attainment is moderately correlated with other heritable characteristics, including cognitive function and personality traits related to persistence and self-discipline


Sciencexpress

GWAS of 126,559 Individuals Identifies Genetic Variants Associated with Educational Attainment

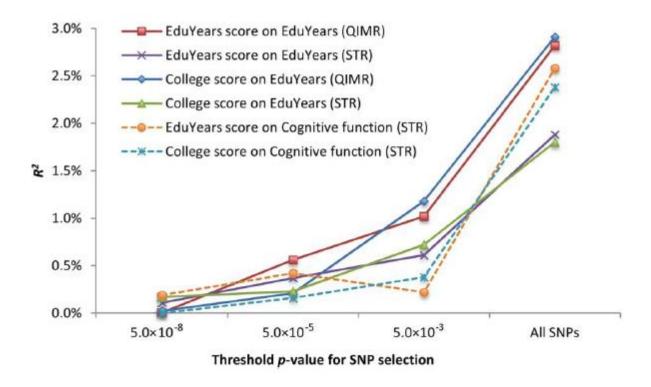
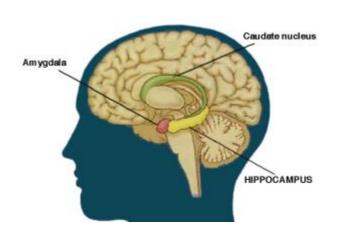
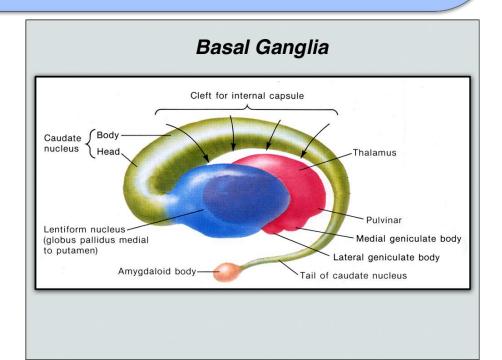

To create a harmonized measure of educational attainment, we coded study-specific measures using the International Standard Classification of Education (ISCED 1997) scale. We analyzed a quantitative variable defined as an individual's years of schooling (EduYears) and a binary variable for college completion (College). College may be more comparable across countries, whereas EduYears contains more information about individual differences within countries.

Table 1. The results of the GWAS meta-analysis for the independent signals reaching $p < 10^{-6}$ in the discovery stage. The rows in bold are the independent signals reaching $p < 5 \times 10^{-8}$ in the discovery stage. "Frequency" refers to allele-frequency in the combined-stage meta-analysis. "Beta/OR" refers to the effect size in the EduYears analysis and to the Odds Ratio in the College analysis. All p-values are from the sample-size-weighted meta-analysis (fixed effects). The p-value in the replication stage meta-analysis was calculated from a one-sided test. p represents the % heterogeneity of effect size between the discovery stage studies. p-value.

SNP				Effective allele	Frequency	Discovery stage			Replication stage		Co	ombined stage		Combined stage – sex-specific				
	Chr	Position (bp)				Beta/OR	P-value	<i>I</i> ²	Pha	Beta/OR	P-value	Beta/OR	P-value 0	Phet	Beta/OR (Males)	P-value (Males)	Beta/OR (Females)	P-value (Females)
								E	duYears				Sem					
rs9320913	6	98691454	LOC100129158	A	0.483	0.106	4.19×10 ⁻⁹	18.3	0.097	0.077	0.012	0.101	3.50×10	0.350	0.095	1.87×10 ⁻⁴	0.100	1.43×10 ⁻⁶
rs3783006	13	97909210	STK24	C	0.454	0.096	2.29×10 ⁻⁷	0	0.982	0.056	0.055	0.088	8.45×10	0.959	0.064	1.44×10 ⁻²	0.108	3.35×10 ⁻⁷
rs8049439	16	28745016	ATXN2L	T	0.581	0.090	7.12×10 ⁻⁷	10.7	0.229	0.065	0.026	0.086	1.15×10	0.205	0.097	1.43×10-4	0.078	1.90×10 ⁻⁴
rs13188378	5	101958587	SLCO6A1	A	0.878	-0.136	7.49×10 ⁻⁷	0	0.791	0.091	0.914	-0.097	1.37×10	0.646	-0.134	8.21×10 ⁻³	-0.080	5.92×10 ⁻³
									College				mo					
rs11584700	1	202843606	LRRN2	A	0.780	0.921	2.07×10-9	13.8	0.179	0.912	4.86×10-4	0.919	8.24×10₽	0.221	0.934	6.11×10-4	0.911	2.12×10°9
rs4851266	2	100184911	LOC150577	T	0.396	1.050	2.20×10 ⁻⁹	23.7	0.049	1.049	0.003	1.050	5.33×100	0.072	1.054	1.55×10 ⁻⁵	1.052	6.74×10 ⁻⁸
rs2054125	2	199093966	PLCLI	T	0.064	1.468	5.55×10 ⁻⁸	7	0.325	1.098	0.225	1.376	2.12×10	0.268	1.264	1.74×10-2	1.503	1.95×10 ⁻⁷
rs3227	6	33770273	ITPR3	C	0.498	1.043	6.02×10 ⁻⁸	5	0.363	1.010	0.280	1.037	3.24×10	0.415	1.046	9.44×10 ⁻⁵	1.029	1.37×10 ⁻³
rs4073894	7	104254200	LHFPL3	A	0.207	1.076	4.41×10 ⁻⁷	0	0.765	1.003	0.467	1.062	5.55×10	0.513	1.050	2.18×10 ⁻²	1.073	1.74×10 ⁻⁵
rs12640626	4	176863266	GPM6A	A	0.580	1.041	4.94×10 ⁻⁷	10.9	0.234	1.000	0.495	1.034	7.48×10	0.420	1.038	1.59×10 ⁻³	1.031	7.61×10 ⁻⁴

Sciencexpress / http://www.sciencemag.org/content/early/recent / 30 May 2013 / Page 2 / 10.1126/science.1235488




Fig. 2. Solid lines show results from regressions of *EduYears* on linear polygenic scores in a set of unrelated individuals from the QIMR (N = 3526) and STR (N = 6770) cohorts. Dashed lines show results from regressions of *Cognitive function* on linear polygenic scores in a sample from STR (N = 1419). The scores are constructed from the meta-analysis for either *EduYears* or *College*, excluding the QIMR and STR cohorts.

A genome-wide association study of educational attainment was conducted in a discovery sample of **101,069** individuals and a replication sample of **25,490**. **Three independent SNPs** are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate.

Estimated effects sizes are small ($R2 \approx 0.02\%$), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for $\approx 2\%$ of the variance in both educational attainment and cognitive function.

Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the **anterior caudate nucleus**.

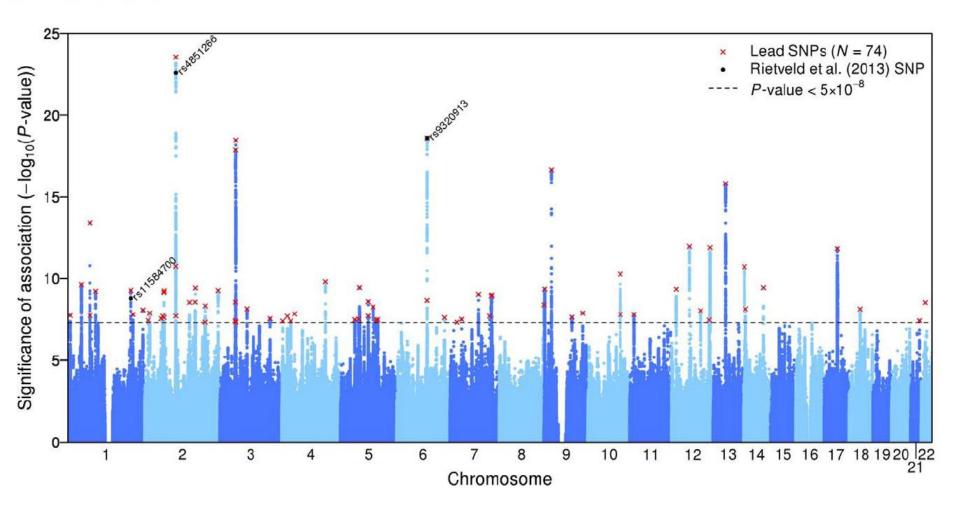
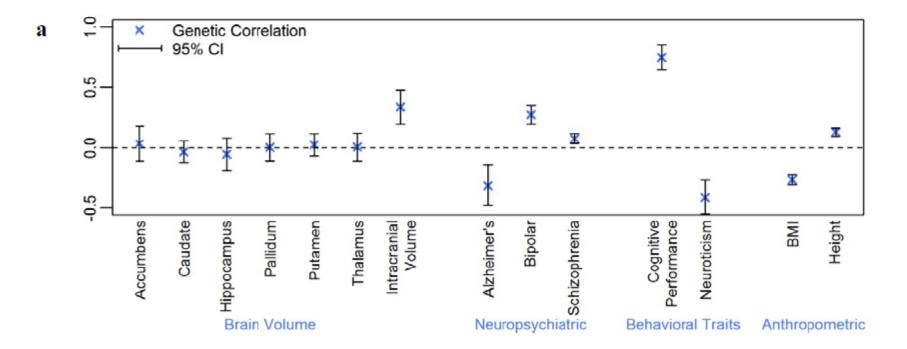
While our linear polygenic score for education achieves an R2 of 2% estimated from a sample of 120,000, a score for height reached 10% estimated from a sample of 180,000, and a score for BMI using only the top 32 SNPs reached 1.4%. Taken together, our findings suggest that the genetic architecture of complex behavioral traits is far more diffuse than that of complex physical traits.

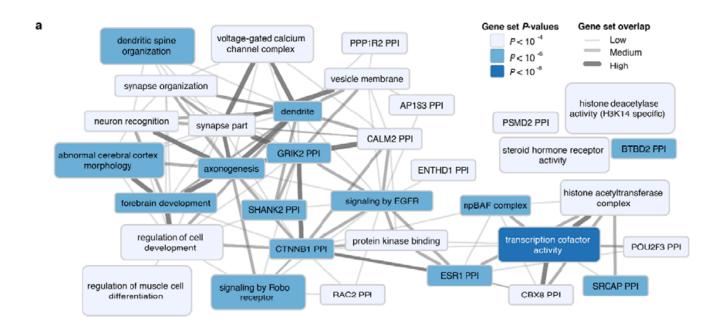
Genome-wide association study identifies 74 loci associated with educational attainment

Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank.

Figure 1 | Manhattan plot for *EduYears* associations (N = 293,723).

The x-axis is chromosomal position, and the y-axis is the significance on a $-\log_{10}$ scale. The black line shows the genome-wide significance level (5×10⁻⁸). The red x's are the 74 approximately independent genome-wide significant associations ("lead SNPs"). The black dots labeled with rs numbers are the 3 Rietveld et al. SNPs.


Figure 2 | Genetic overlap between EduYears and other traits.

a, Results from bivariate Linkage-Disequilibrium (LD) Score regressions: estimates of genetic correlation with brain volume, neuropsychiatric, behavioral, and anthropometric phenotypes for which GWAS summary statistics were available in the public domain. **b,** Q-Q plots for the 74 lead *EduYears* SNPs in selected phenotypes (for other phenotypes, see Extended Data Fig. 4). SNPs with concordant effects on both phenotypes are pink, and SNPs with discordant effects are blue. SNPs outside the gray area pass Bonferroni-corrected significance thresholds that correct for the total number of SNPs we tested ($P < 0.05/74 = 6.8 \times 10^{-4}$) and are labeled with their rs numbers. For the sign concordance test: * P < 0.05, ** P < 0.01, and *** P < 0.001.

Figure 3 | Overview of biological annotation.

a. We identified 283 significantly (FDR < 0.05) enriched reconstituted gene sets, which we grouped using the Affinity Propagation method into the 34 clusters displayed in the graph. Each cluster is named after one of its member gene sets. The color represents the P-value of the member set exhibiting the most statistically significant enrichment. Overlap between pairs of clusters is represented by an edge. Edge width represents the Pearson correlation ρ between the two vectors of gene membership scores ($\rho < 0.3$, no edge; $0.3 \le \rho < 0.5$, thin edge; $0.5 \le \rho < 0.7$, intermediate edge; $\rho \ge 0.7$, thick edge), where each cluster's vector is the vector for the gene set after which the cluster is named. b, For each of the plotted disorders, we calculated the odds ratio corresponding to the overlap between genes where de novo mutations have been implicated in the disorder and genes prioritized by DEPICT as affecting the given GWAS phenotype. EduYears, years of education; BMI, body mass index; WHR, waist-to-hip ratio adjusted for BMI. c, The DEPICT-prioritized genes for EduYears measured in the BrainSpan Developmental Transcriptome data (red curve) exhibit higher expression in the brain during prenatal relative to postnatal stages. The DEPICT-prioritized genes exhibit similar median gene-expression levels across different brain areas (gray lines). Analyses were based on median log₂-transformed RNA-Seq data. Error bars represent 95% confidence intervals.

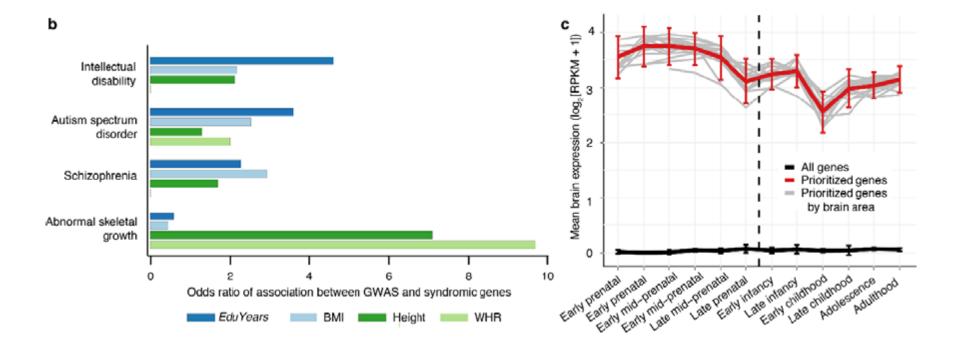
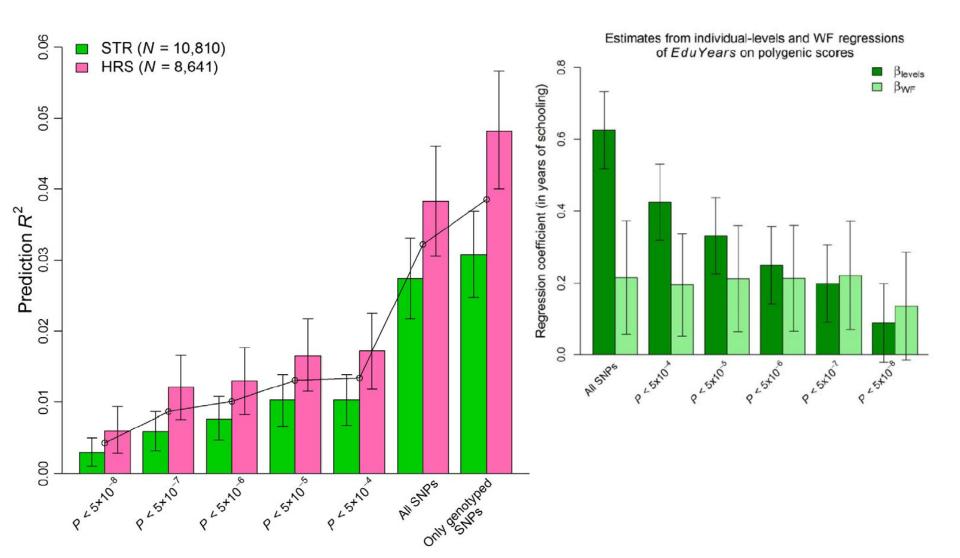
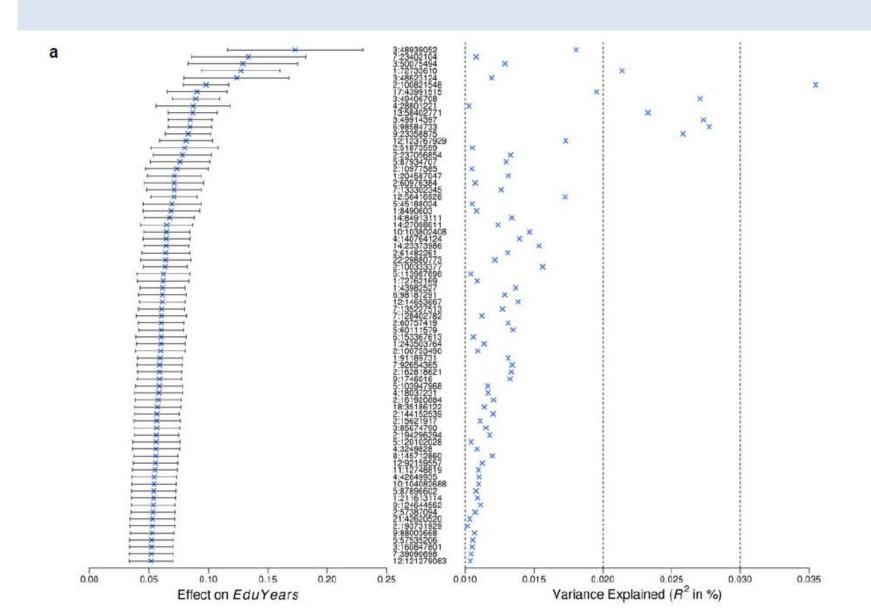
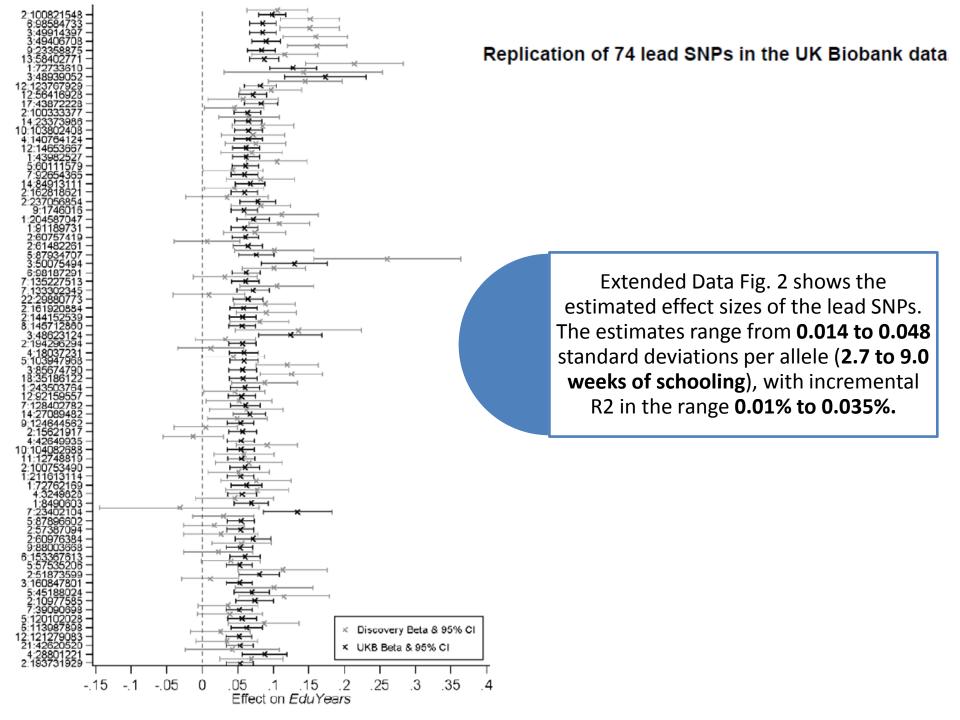
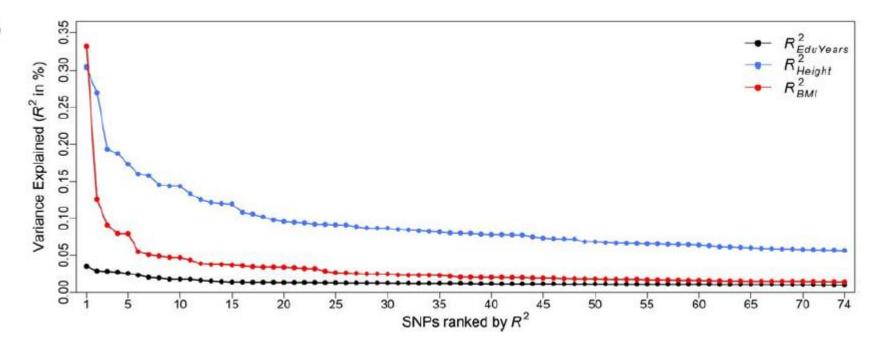





Figure 4 | Variance explained by *EduYears*-associated SNPs at different levels of significance in the Swedish Twin Registry (STR) and Health and Retirement Study (HRS). Predictive power of the polygenic score in unrelated individuals. Cohorts are HRS (pink) and STR (green). The y-axis is the variance explained (incremental R^2 from including the score in the regression). The line is the sample-size-weighted mean R^2 . The "All SNPs" score was constructed using all SNPs (genotyped and imputed), and the "Only genotyped SNPs" score was constructed using all genotyped SNPs. For the other scores, SNPs were selected from a GCTA-COJO analysis. For all scores, weights were estimated with the validation cohort excluded from the meta-analysis. All scores are residualized on the first 10 principal components.



The distribution of effect sizes of the 74 lead SNPs

To further test the robustness of our findings, we examined the within sample and out-of-sample replicability of SNPs reaching genomewide significance. We found that SNPs identified in the previous educational attainment meta-analysis replicated in the new cohorts included here, and conversely, that SNPs reaching genome-wide significance in the new cohorts replicated in the old cohorts.

Table 1 | Top genes implicated by bioinformatics analyses

developmental biology, decreased brain size, abnormal cerebral cortex morphology

dendrite morphogenesis, dendrite development, abnormal hippocampal mossy fiber

developmental biology, signaling by Robo receptor, SWI/SNF-type complex

dendrite morphogenesis, developmental biology, decreased brain size

negative regulation of signal transduction, PI3K events in ErbB4 signaling

activation of RAC, abnormal axon guidance, axon guidance (Reactome)

decreased brain size, SWI/SNF-type complex, nBAF complex

transcription factor binding, negative regulation of signal transduction, PI3K events in ErbB4

dendritic spine organization, abnormal hippocampal mossy fiber morphology, SWI/SNF-type

dendrite morphogenesis, abnormal hippocampal mossy fiber morphology, abnormal axon

decreased brain size, abnormal cerebral cortex morphology, abnormal hippocampal mossy

	Tabi	61 10	p genes	o mup	incated by bioinformatics analyses.
SNP	Gene	Syndromic	Prioritization	Lines of	Top-ranking gene sets
	symbol	gene	<i>P</i> -value	evidence	
Top 10 genes, based on DEPICT prioritization P-value					
rs34328009	CAMTA1	_	4.7×10^{-13}	2	abnormal dorsal root ganglion morphology, G alpha (12/13) signaling events
rs58852793	PPP6R2	_	5.2×10 ⁻¹²	3	abnormal striatum morphology, histone deacetylase activity (H3K9 specific), NAD-dependent histone deacetylase activity
rs35436312	FOXO6	_	1.2×10 ⁻¹¹	3	dendrite development, regulation of cell development
rs72771875	MEF2C	ID, ASD	1.4×10 ⁻⁸	5	ErbB signaling pathway, abnormal sternum ossificiation, regulation of muscle cell differentiation
rs9544418	NBEA	SCZ	1.8×10 ⁻⁸	4	developmental biology, signaling by Robo receptor, dendritic shaft
rs12754946	USP33	_	6.1×10 ⁻⁸	3	protein serine/threonine phosphatase complex
rs111730030	NACC1	_	6.8×10 ⁻⁸	2	transcription factor binding, kinase binding, regulation of cell development
rs11191193	MGEA5	_	1.5×10 ⁻⁷	2	protein kinase binding, kinase binding
rs12987662	LONRF2	_	4.4×10^{-7}	3	ectopic cerebellar granule cells, dendritic spine organization, synapse organization
rs11712056	IP6K2	_	6.0×10^{-7}	2	transcription coactivator activity, SWI/SNF-type complex, nBAF complex

signaling

complex

morphology

fiber morphology

protein serine/threonine phosphatase complex

guidance

Top 15 genes overlapping the DEPICT-defined loci of the lead SNPs, based on multiple, convergent lines of evidence

5

5

5

5

5

5

4

4

4

4

4

4

4

6.3×10⁻⁴

1.3×10⁻⁴

 7.6×10^{-4}

 8.9×10^{-4}

 9.5×10^{-4}

7.2×10⁻³

0.05 8.8×10⁻⁶

 2.6×10^{-5}

 6.8×10^{-5}

 3.6×10^{-4}

 4.8×10^{-4}

 8.1×10^{-4}

 1.6×10^{-3}

rs4500960

rs61160187

rs2457660

rs11712056

rs192818565

rs7306755

rs12987662

rs1871109

rs11712056

rs10061788

rs9320913

rs11712056

rs2964197

rs9537821

TBR1

ZSWIM6

BCL11A

CELSR3

MAPT

SBNO1

NBAS

SMARCA2

MAP4

LINC00461

POU3F2

RAD54L2

PLK2

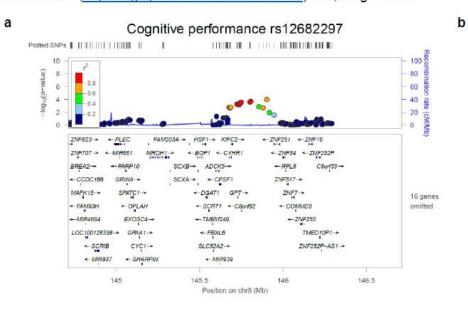
PCDH17

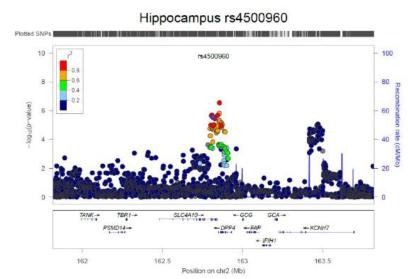
ID, ASD

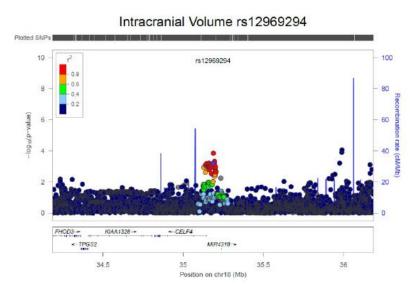
ASD

SCZ

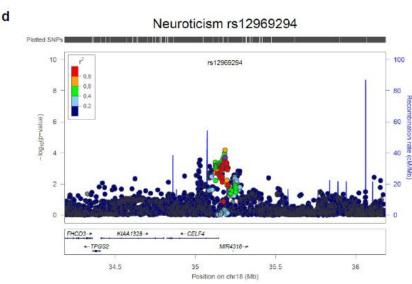
ID

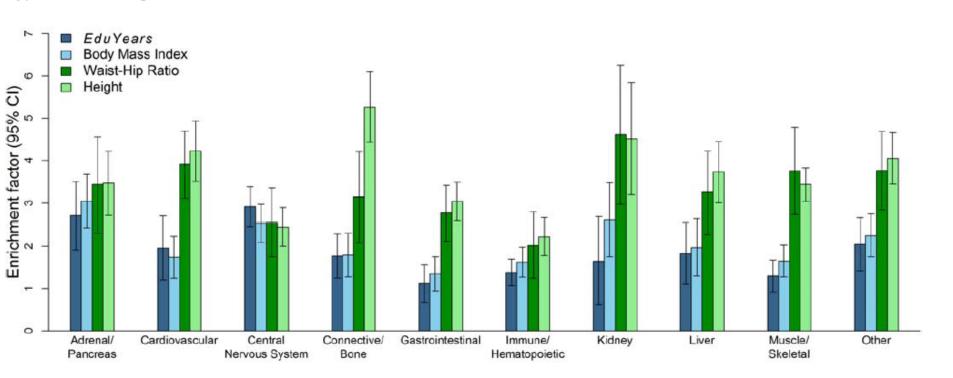

SCZ


ID

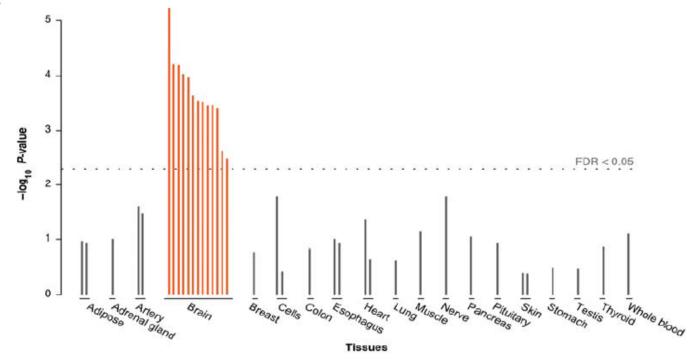

ASD

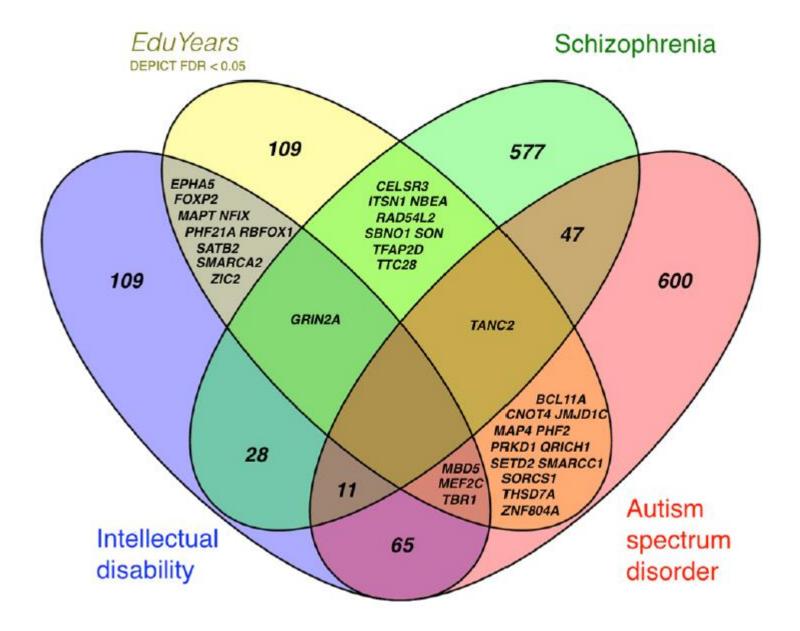
SCZ

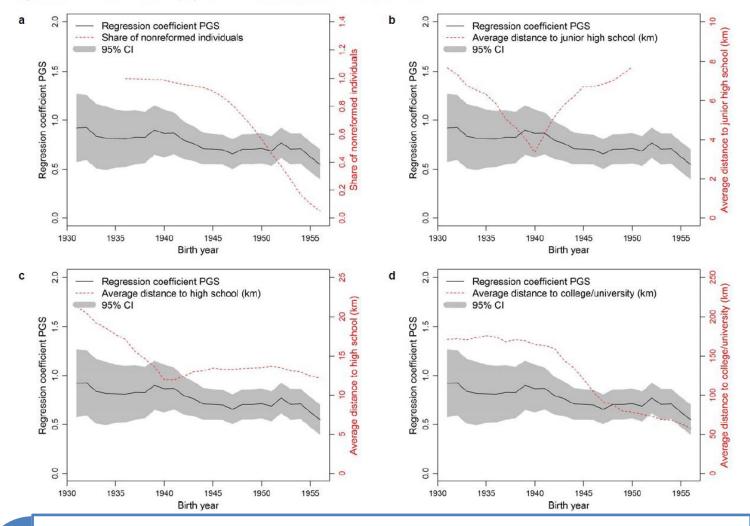

Extended Data Figure 6 | Regional association plots for four of the ten prioritized SNPs for MHBA phenotypes identified using *EduYears* as a proxy phenotype: a, cognitive performance; b, hippocampus; c, intracranial volume; d, neuroticism. The four were selected because very few genome-wide significant SNPs have been previously reported for these traits. Data sources and methods are described in Supplementary Information section 3. The R² values are from the hg19 / 1000 Genomes Nov 2014 EUR references samples. The figures were created with LocusZoom (http://csq.sph.umich.edu/locuszoom/). Mb, megabases.



C




Extended Data Figure 8 | **Estimates of enrichment factors by cell-type groups using the method of Funucane et al. (2015).** The enrichment factor for a given cell-type group is the ratio of variance explained by SNPs in that group to the overall fraction of SNPs in that group. To benchmark the estimates for *EduYears*, we compare the enrichment factors to those obtained when we use the largest GWAS conducted to date on body mass index, height, and waist-to-hip ratio adjusted for BMI. The estimates were produced with the LDSC python software, using the LD scores and functional partitions introduced in Finucane et al. (2015) and the HapMap3 SNPs with MAF > 0.05. Each of the 10 enrichment calculations for a particular cell type is performed independently, while each controlling for the 52 functional annotation categories in the full baseline model. The 95% confidence intervals are not adjusted for multiple hypothesis testing.


Extended Data Figure 9 | Additional biological annotation. a, Enrichment of tissue types. We took measurements of gene expression by the Genotype-Tissue Expression (GTEx) Consortium and tested whether the genes overlapping *EduYears*-associated loci are significantly overexpressed (relative to genes in random sets of loci matched by gene density) in each of 37 tissue types. The tissue types are grouped by organ. The *P*-value corresponding to FDR < 0.05 is represented by the black dotted line, and tissues passing this significance threshold are shown in red. **b,** Significantly (FDR < 0.05) DEPICT-prioritized genes in *EduYears*-associated loci exhibit substantial overlap with genes previously reported to harbor sites where mutations increase risk of intellectual disability and autism spectrum disorder.

а

Extended Data Figure 10 | The predictive power of the all-SNPs polygenic score (PGS) varies in Sweden by birth cohort. Five-year roll regressions of years of education on the PGS (left axis in all four panels), share of individuals not affected by the comprehensive school reform right axis), and average distance to nearest junior high school (b, right axis), nearest high school (c, right axis) and nearest college/university (right axis). The shaded area displays the 95% confidence interval for the PGS effect.

Across our two holdout samples, the mean predictive power of a polygenic score constructed from all measured SNPs is **3.2**%