

Breastfeeding

George Dedoussis
Professor of Human Biology

Beginning of Life

The first 1000 days of life, spanning from conception to 2 years of age, is recognized as a critical period of growth and development. ☐ It is well established that early life nutrition is a key environmental factor that strongly influences the risk of developing cardiovascular and metabolic diseases in adulthood ■ Nature leads the first 500 days of the offspring's diet – the period from conception to approximately six months of age – when the growing offspring is completely dependent on his/her mother for nutrition. ☐ This adaptive nature of nutrition occurs via the placenta to the developing embryo and fetus, and then ideally via exclusive breastfeeding for the first six months of infancy. At 12-month-old, an infant's daily sleep/wake cycle is moderately stabilized with an increasing consolidation of sleep during the night compared to early infancy. ☐ Using multivariate logistic regression with confounder adjustment, exclusively breastfeeding during the first six months of life was negatively associated with postmidnight feeding at 12-month-old.

Fig. 1. Mean hourly energy intake and proportion of infants fed across 24 hours

The Breastfed Baby

Immune system.

Responds better to vaccinations. Human milk helps to mature immune system. Decreased risk of childhood cancer.

Skin.

Less allergic eczema in breastfed infants.

Joints and muscles.

Juvenile
rheumatoid
arthritis is
less common
in children
who were

breastfed.

Throat.

Children who are breastfed are less • likely to require tonsillectomies.

Bowels.

Less constipation.

Urinary tract.

Fewer infections in breastfed infants

Appendix.

Children with acute appendicitis are less likely to have been breastfed.

Kidneys.

Eves.

Ears.

Visual acuity is

human milk.

Breastfed babies

get fewer ear

infections.

higher in babies fed

With less salt and less protein, human milk is easier on a baby's kidneys.

Digestive system.

Less diarrhea, fewer gastrointestinal infections in babies who are breastfeeding. Six months or more of exclusive breastfeeding reduces risk of food allergies. Also, less risk of Crohn's disease and ulcerative colitis in adulthood.

Higher IQ.

Cholesterol and other types of fat in human milk support the growth of nerve tissue.

Endocrine system.

Reduced risk of getting diabetes.

Mouth.

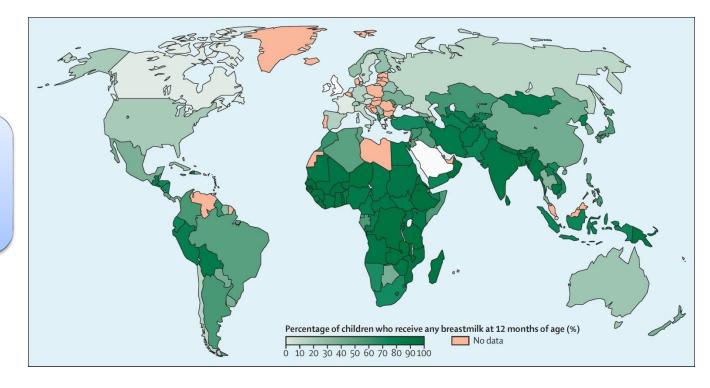
Less need for orthodontics in children breastfed more than a year. Improved muscle development of face from suckling at the breast. Subtle changes in the taste of human milk prepare babies to accept a variety of solid foods.

Respiratory system.

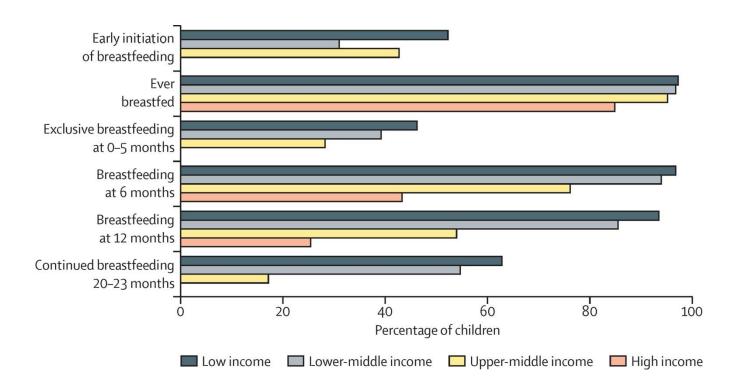
Breastfed babies have fewer and less severe upper respiratory infections, less wheezing, less pneumonia and less influenza.

Heart and circulatory system.

Breastfed children have lower cholesterol as adults. Heart rates are lower in breastfed infants.

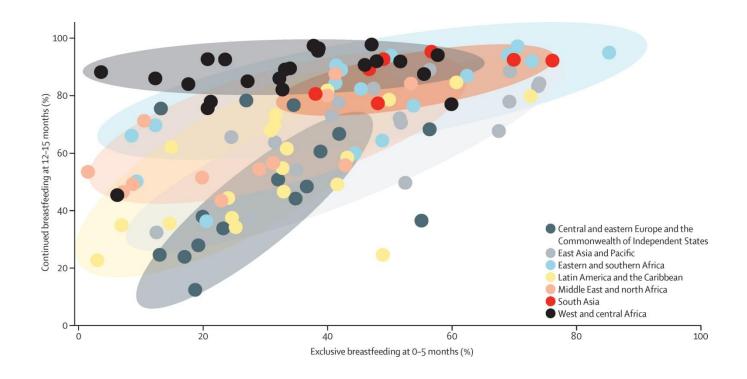

thealphaparent.com

Breastfeeding 1


Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect

Cesar G Victora, Rajiv Bahl, Aluísio J D Barros, Giovanny V A França, Susan Horton, Julia Krasevec, Simon Murch, Mari Jeeva Sankar, Neff Walker, Nigel C Rollins, for The Lancet Breastfeeding Series Group*

In most high-income countries, the prevalence is lower than 20%. We noted important differences—eg, between the UK (<1%) and the USA (27%), and between Norway (35%) and Sweden (16%).



Most mothers in all country groups started breastfeeding; only three countries (France, Spain, and the USA) had rates below 80% for ever breastfeeding.

However, early initiation was low in all settings, as was exclusive breastfeeding. Breastfeeding at 12 months was widespread in low-income and lower-middle-income settings, but uncommon elsewhere.

Countries from eastern and southern Africa tended to have on average lower rates of continued breastfeeding but higher rates of exclusive breastfeeding than did those in west Africa. In Latin America and the Caribbean, and in central and eastern Europe and the Commonwealth of Independent States, both indicators tended to be lower than in Africa. South Asian countries had high rates of both indicators whereas countries in the Middle East and north Africa had lower rates. Countries from east Asia and the Pacific region had moderate to high prevalence of both indicators.

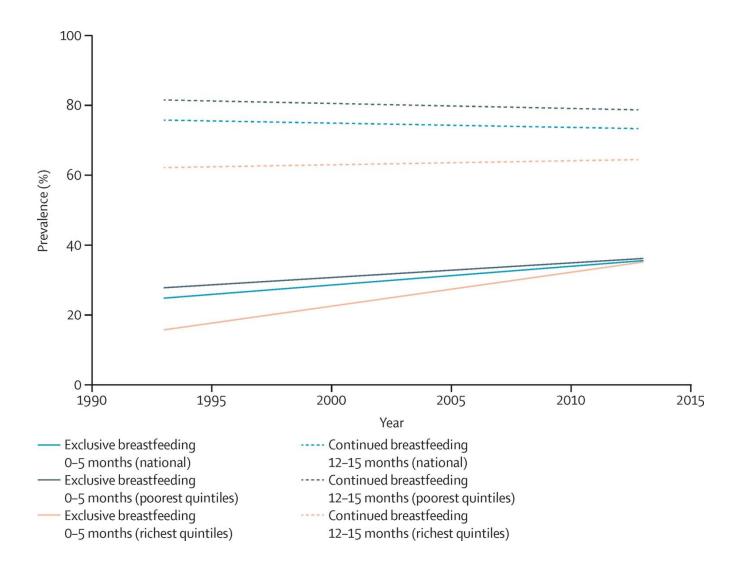
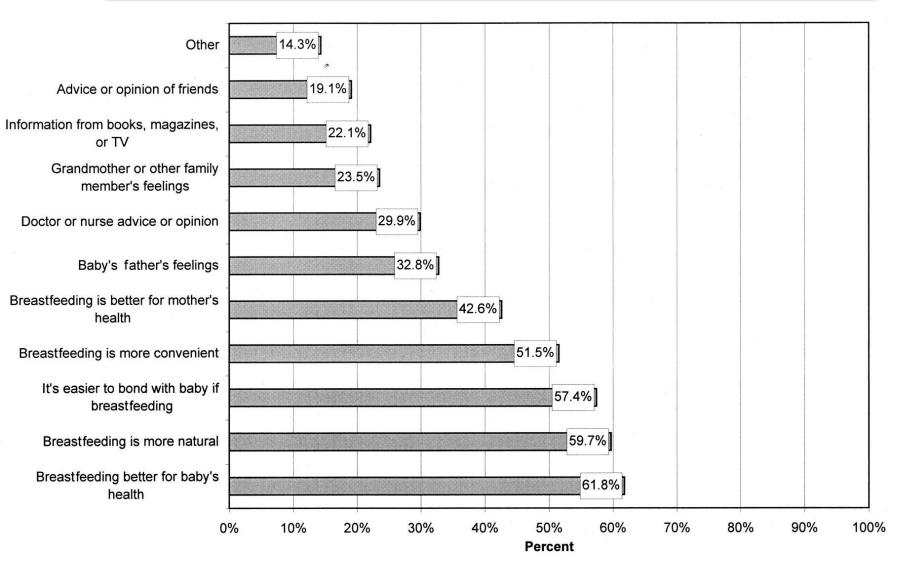



Figure 4: National and wealth quintile-specific time trends in exclusive and continued breastfeeding, 1993–2013

Data are weighted by national populations of children younger than 2 years at the time of the survey. Analyses restricted to 66 countries with information about household wealth.

Major Factors Influencing Breastfeeding Rates: Mother's Perception of Father's Attitude and Milk Supply

Pediatrics November 2000, VOLUME 106 / ISSUE 5

Under the influence of the hormones **prolactin** and **oxytocin**, women produce milk after childbirth to feed the baby. The initial milk produced is referred to as **colostrum**, which is high in the **immunoglobin IgA**, which coats the gastrointestinal tract. This helps to protect the newborn until its own immune system is functioning properly.

The **amount of milk** produced depends on how often the mother is nursing and/or pumping: the more the mother nurses her baby or pumps, the more milk is produced. It is beneficial to nurse **when the baby wants** to nurse rather than on a schedule.

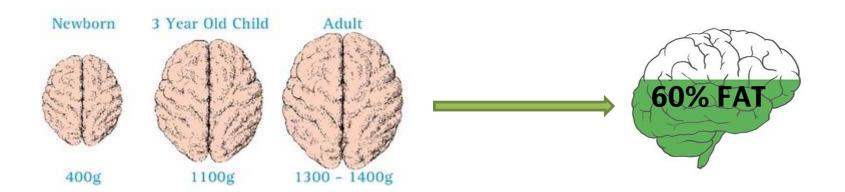
Colostrum vs breastmilk

Fat (g/100 ml)	
total	4.2
fatty acids - length 8C	trace
polyunsaturated fatty acids	0,6
cholesterol	0,016
Protein (g/100 ml)	
total	1.1
casein	0.4
a-lactalbumin	0.3
lactoferrin (apo-lactoferrin)	0.2
IgA	0.1
lgG	0.001
lysozyme	0.05
serum albumin	0.05
ß-lactoglobulin	-
Carbohydrate (g/100 ml)	
lactose	7
oligosaccharides	0.5
Minerals (g/100 ml)	
calcium	0.03
phosphorus	0.014
sodium	0.015
potassium	0.055
chlorine	0.043

Breast milk contains a unique type of sugars, human milk oligosaccharides (HMOs), which are not present in infant formula. HMOs are not digested by the infant but help to make up the intestinal flora. They act as decoy receptors that block the attachment of disease causing pathogens, which may help to prevent infectious diseases. They also alter immune cell responses, which may benefit the infant. To date a hundred different HMOs have been identified; both the number and composition vary between women and each HMO may have a distinct functionality

Nutrient	Human Milk	Cow's Milk	Goat's Milk
Calories	172	146	168
Protein (g)	2.5	7.9	8.7
Fat (g)	10.8	7.9	10.1
Saturated fat (g)	4.9	4.6	6.5
Monounsaturat ed fat (g)	4.1	2.0	2.7
Polyunsaturated fat (g)	1.2	0.5	0.4
Carbohydrate (g)	17.0	11.0	10.9
Folate (mcg)	12	12	2
Vitamin C (mg)	12.3	0	3.2
Sodium (mg)	42	98	122
Iron (mg)	0.07	0.07	0.12
Calcium (mg)	79	276	327

Place of storage	Temperature	Maximum storage time
In a room	25 °C	Six to eight hours
Insulated thermal bag with ice packs		Up to 24 hours
In a <u>refrigerator</u>	4 °C	Up to five days
Freezer compartment inside a refrigerator	-15 °C	Two weeks
A combined refrigerator and freezer with separate doors	-18 °C	Three to six months
Chest or upright manual defrost deep <u>freezer</u>	-20 °C	Six to twelve months


Genetic Variants of the *FADS* Gene Cluster and *ELOVL* Gene Family, Colostrums LC-PUFA Levels, Breastfeeding, and Child Cognition

Eva Morales^{1,2,3}*, Mariona Bustamante^{1,2,3,4}, Juan Ramon Gonzalez^{1,2,3}, Monica Guxens^{1,2,3}, Maties Torrent⁵, Michelle Mendez^{1,2,3}, Raquel Garcia-Esteban^{1,2,3}, Jordi Julvez^{1,2,3}, Joan Forns^{1,2,3}, Martine Vrijheid^{1,2,3}, Carolina Molto-Puigmarti^{3,6}, Carmen Lopez-Sabater^{3,6}, Xavier Estivill^{3,4,7}, Jordi Sunyer^{1,2,3,8}

- to determine whether maternal genetic variants in the FADS cluster and ELOVL genes contribute to differences in LC-PUFA levels in colostrum
- to analyze whether these maternal variants are related to child cognition
- to assess whether children's variants modify breastfeeding effects on cognition.

The majority of dry weight in an adult brain is composed of lipids, 35% of which are long chain polyunsaturated fatty acids (LC-PUFAs)

LC-PUFAs Omega-6 LC-PUFAs: Omega-3 LC-PUFAs: -Alpha-linoleic acid (ALA) -Linoleic acid (LA) ∆6 desaturase ∆6 desaturase ∆6 elongase ∆6 elongase ∆5 desaturase ∆5 desaturase -Arachidonic acid (AA) -Eicosapentaenoic acid (EPA) ∆5 elongase ∆5 elongase ∆4 desaturase -Docosapentaenoic acid (DPA) -Docosahexaenoic acid (DHA) **Enzymatic oxidation** Non-enzymatic oxidation -Neuroprotectin D1 -Isoprostanes -Resolvins -Neuroprostanes -Maresin-1 -Aldehydes

-Prostaglandins

-4-hydroxyhexenal

During pregnancy, the fetus is supplied with preformed maternal LC-PUFAs by placental transfer. After birth breast milk provides a unique supply of crucial LC-PUFAs including eicosapentaenoic acid (EPA), arachidonic acid (AA) and docosahexanoic acid (DHA), which support the accretion of LC-PUFA in the brain growth

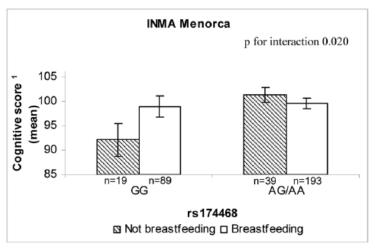
Two 25-milliliter samples of human breast milk. The lefthand sample is first milk produced and the righthand sample is milk produced later during the same pumping.

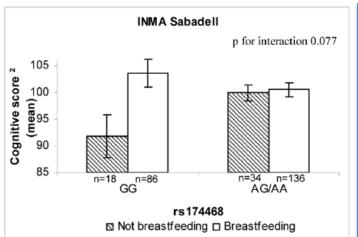
Mental development

- ☐ It was assessed at age 14 months (range 12–17 months) by 2 specially trained psychologists using the **Bayley Scales** of Infant Development, first edition.
- ☐ For the present study, the main outcome was the score in the mental development scale consisting in 163 items that assess age appropriate cognitive development in areas such as performance ability, memory, and first verbal learning.

Table 1. FADS1, FADS2 and ELOVL5 enzymatic indexes according to maternal genotypes and LC-PUFA levels in colostrum.

			11		12		22		
		Major/minor allele	N	Mean (sd)	N	Mean (sd)	N	Mean (sd)	p value*
FADS1 index									
AA:DGLA									
Gene	SNP								
FADS	rs174537	G/T	142	1.46 (0.02)	109	1.22 (0.03)	19	0.96 (0.08)	1.0×10 ⁻²
FADS	rs968567	G/A	200	1.44 (0.02)	57	1.04 (0.03)	3	0.76 (0.08)	2.4×10 ⁻²
FADS	rs2072114	A/G	219	1.35 (0.02)	49	1.23 (0.04)	2	0.93 (0.04)	0.0026
FADS	rs526126	C/G	160	1.37 (0.02)	66	1.25 (0.04)	2	1.06 (0.19)	0.0031
FADS	rs174626	T/C	66	1.43 (0.03)	141	1.32 (0.02)	63	1.25 (0.04)	0.0007
FADS	rs174627	C/T	209	1.37 (0.02)	56	1.20 (0.04)	5	0.99 (0.14)	7.5×10 ⁻⁰
FADS	rs174464	C/T	116	1.41 (0.03)	103	1.26 (0.03)	19	1.20 (0.07)	7.2×10 ⁻⁰
FADS	rs174468	G/A	100	1.28 (0.03)	124	1.34 (0.03)	40	1.43 (0.04)	0.0078
FADS2 indexes									
DGLA:LA									
Gene	SNP								
FADS	rs174537	G/T	142	0.06 (0.001)	109	0.07 (0.002)	19	0.09 (0.008)	8.5×10 ⁻⁰
FADS	rs968567	G/A	200	0.06 (0.001)	57	0.09 (0.003)	3	0.11 (0.016)	1.1×10 ⁻¹
FADS	rs174627	C/T	209	0.06 (0.001)	56	0.07 (0.003)	5	0.08 (0.020)	0.0129
DHA:EPA									
Gene	SNP								
FADS	rs174602	A/G	209	1.65 (0.03)	56	1.56 (0.03)	5	1.42 (0.05)	0.0039
ELOVL5 index									
DPA:EPA									
Gene	SNP								
ELOVL5	rs2397142	C/G	125	7.81 (0.31)	112	8.08 (0.42)	31	10.02 (1.28)	0.0362


INMA Sabadell cohort.


Major allele:1; minor allele:2. Data are means (standard error). *P-values for additive genetic models assuming a trend per copy of the minor allele.

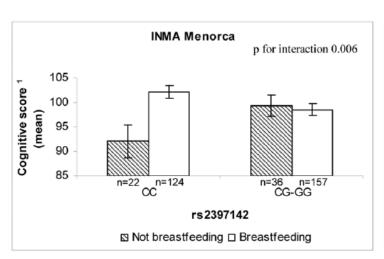

AA: Arachidonic acid; DGLA: Eicosatrienoic acid; LA: Linoleic acid; DHA: Docosahexaenoic acid; DPA: Docosapentaenoic acid; EPA: Eicosapentanoic acid.

Table 2. Association between maternal genetic variants and child cognition at age 14 months.

			11		12		22		
	N	Major/minor allele	N	Score	N	Score	N	Score	p value
FADS cluster									
rs 174537	400	G/T	203	99.5 (1.1)	169	101.0 (1.2)	28	100.7 (2.5)	0.130
rs968567	385	G/A	296	99.4 (0.9)	83	102.6 (1.6)	6	106.3 (4.7)	0.023
rs 174570	347	C/T	279	101.0 (0.9)	64	98.5 (2.0)	4	95.8 (3.8)	0.330
rs2072114	399	A/G	310	100.2 (0.9)	87	100.5 (1.5)	2	100.1 (5.7)	0.880
rs 174602	393	A/G	230	101.3 (0.9)	137	98.8 (1.4)	26	98.3 (2.9)	0.027
rs526126	336	C/G	234	99.9 (1.0)	99	102.8 (1.6)	3	105.8 (8.3)	0.059
rs 174626	399	T/C	102	99.9 (1.4)	209	99.5 (1.1)	88	102.2 (1.7)	0.240
rs 174627	399	C/T	313	99.4 (0.9)	82	103.1 (1.5)	4	109.4 (10.3)	< 0.001
rs7482316	382	A/G	310	100.7 (0.9)	70	98.0 (2.0)	2	97.2 (20.1)	0.474
rs174464	348	C/T	174	98.3 (1.2)	149	102.2 (1.2)	25	106.6 (2.2)	0.008
rs 174468	392	G/A	141	100.4 (1.4)	187	100.1 (1.1)	64	99.9 (1.8)	0.563
ELOVL2									
rs3734397	400	A/G	212	100.9 (0.9)	168	99.1 (1.2)	20	102.7 (4.5)	0.291
rs953413	387	G/A	114	99.2 (1.4)	193	101.1 (1.1)	80	100.0 (1.7)	0.398
rs 10498676	392	G/A	288	100.0 (0.9)	94	101.7 (1.6)	10	92.6 (7.6)	0.583
rs6936315	338	T/C	241	100.5 (1.0)	89	101.0 (1.7)	8	102.2 (4.1)	0.844
rs3798719	385	C/T	196	99.7 (1.2)	151	101.6 (1.2)	38	96.3 (2.2)	0.849
rs13204015	389	T/C	356	100.7 (0.8)	32	98.1 (3.1)	1	97.2 (0.0)	0.309
ELOVL5									
rs17544159	383	A/C	332	99.4 (0.8)	51	105.1 (2.0)	-	-	0.016
rs2281274	394	T/C	210	99.7 (1.1)	147	100.6 (1.3)	37	101.7 (2.4)	0.275
rs 2294859	392	T/C	332	100.8 (0.9)	56	99.2 (1.7)	4	92.9 (8.3)	0.983
rs9395855	399	T/G	105	98.3 (1.6)	204	101.0 (1.0)	90	100.8 (1.7)	0.633
rs 11968589	390	C/T	310	100.5 (0.9)	74	99.1 (1.9)	6	96.2 (5.6)	0.601
rs2397142	397	C/G	173	99.7 (1.1)	178	100.1 (1.2)	46	101.9 (2.1)	0.499
rs12207094	398	A/T	287	99.1 (0.9)	106	102.8 (1.4)	5	119.1 (7.4)	0.003

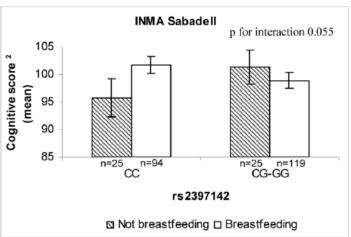


Figure 2. Child cognition scores by child' genetic SNPs in the FADS gene cluster (rs174468) and ELOVL5 gene (rs2397142), by breastfeeding and cohort. Bars represent standard error. Adjusted for sex, school trimester at testing, maternal social class, maternal education,

They found that not being breastfed conferred disadvantage in cognition (9 point in the INMA-Menorca cohort and 8 in the INMApoints Sabadell cohort) among children GG homozygotes for rs174468 (low FADS1 index), but not among those carrying at least one copy of the A allele (high FADS1 index).

In addition, not being breastfed resulted in a disadvantage in cognition (8-point in INMA-Menorca and 5-point in the INMA-Sabadell) among children CC homozygotes for rs2397142 (low ELOVL5 index), but not among those carrying at least one copy of the G allele (high ELOVL5 index).

In contrast, breastfed children did not differ in cognition score irrespective of their genetic variants in these polymorphisms.

Table 3. Child cognition scores* (mean and standard error (SE)) by levels of LC-PUFA in colostrum and by rs2397142 (*ELOVL5* gene) among breast fed children of the INMA Sabadell cohort.

	rs2397142 CC			rs23 CG-	397142 GG		
	N	Mean	SE	N	Mean	SE	p for interaction
EPA/AA ratio							
Low	25	96.1	3.5	41	100.7	2.3	0.029
High	40	104.8	2.4	37	98.0	2.9	
DHA/AA ratio							
Low	35	96.8	2.8	39	98.6	2.7	0.018
High	30	106.9	2.7	39	100.2	2.4	

AA: Arachidonic acid; EPA: Eicosapentanoic acid; DHA: Docosahexaenoic acid. *Adjusted for sex, age (days), psychologist, quality of neuropsychological test, maternal education, and use of gas stove at home.

Results of the present study showed that **LC-PUFA supplies** during pregnancy and lactation, genetically determined by maternal desaturase and elongase activities, appear to have functional importance to the infant **brain development**. In addition, breastfeeding effects on **cognition** are also modified by child genetic variants in desaturase and elongase enzymes involved in the control of LC-PUFA pathways.

Does a short breastfeeding period protect from FTO-induced adiposity in children?

Does a short breastfeeding period protect from *FTO*-induced adiposity in children?

Table I. Anthropometric variables and FTO genotyping in all children cohorts.

	GENDAI	ALSPAC	GENESIS	
FTO variant	rs99396	609 (T>A)	rs178174	49 (T>G)
n	922	6131	394	775
Age (years)	11.2 ± 0.6	11.7 ± 0.22	2-3	3-4
Sex (m/f) (%)	46.9/53.1	51.5/48.5	54.8/45.2	52.9/47.1
BMI (kg/m ²)	20.0 ± 3.4	19.05 ± 3.4	16.4 ± 1.5	16.2 ± 1.6
Waist (cm)	68.7 ± 9.6	68.3 ± 9.4	49.5 ± 3.3	51.4 ± 3.9
WHR	0.8 ± 0.1	0.84 ± 0.06	0.9 ± 0.0	0.9 ± 0.0
Tricept Skinfolds (mm)	19.4 ± 7.5	NA	9.6 ± 2.5	9.5 ± 2.7
Subscapular	11.4 ± 5.3	NA	6.7 ± 2.1	6.7 ± 2.1
Genotype (%)	AA (16.1)	AA (15.50)	GG (20.7)	GG (22.1)
	TA (52.0)	TA (47.17)	TG (32.6)	TG (33.5)
	TT (32.0)	TT (37.33)	TT (46.7)	TT (44.4)
MAF	A(0.421)	A(0.39)	G(0.370)	G(0.388)

Table IV. Multiple linear regression models for the FTO polymorphisms rs9939609 and rs17817449.

	GENDA	I	ALSP.	AC	GENESIS				
					2-3 years		3–4 years		
Dependent variable	Beta (SE)	P	Beta (SE)	P	Beta (SE)	P	Beta (SE)	P	
BMI (kg/m²) Waist circumference (cm) WHR Triceps skinfold (mm) Subscapular skinfold (mm)	0.430 (0.166) 1.067 (0.456) 0.004 (0.003) 0.972 (0.367) 0.593 (0.261)	0.009 0.019 0.061* 0.003* 0.023	0.542 (0.096) 1.468 (0.263) 0.005 (0.002) NA NA	1.961e-08 2.803e-08 0.004 NA NA	-0.046 (0.095) 0.033 (0.213) -0.001 (0.003) -0.018 (0.163) -0.099 (0.134)	0.621 0.876 0.625 0.929 0.454	0.093 (0.073) 0.473 (0.181) 0.000 (0.002) 0.221 (0.122) 0.227 (0.095)	0.203 0.008 0.989 0.068 0.014	

The models in GENDAI and GENESIS were adjusted for the following confounders: age, sex, physical inactivity, Tanner stage. For the same confounders except age all models were adjusted in ALSPAC. Beta coefficients represent the effect of each extra minor allele. P* values are from log transformed variables.

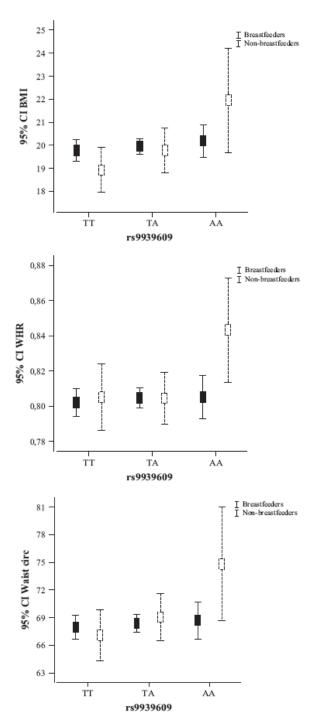


Table V. Multivariate linear regression models for the interaction between breastfeeding (breastfeeders vs. non-breastfeeders) and FTO polymorphism rs9939609.

	GENDA	ALSPAC		GENESIS				
Dependent variable		P	Beta	P	2-3 years		3-4 years	
	Beta (SE)				Beta (SE)	P	Beta (SE)	P
BMI (kg/m ²)	-0.025 (0.040)	0.528	0.010	0.957	-0.076 (0.028)	0.007	-0.005 (0.021)	0.78
Waist circumference (cm)	-0.144 (0.110)	0.190	NA	NA	-0.040 (0.064)	0.51	0.03 (0.051)	0.59
WHR	-0.001 (0.001)	0.009*	-0.004	0.138	0.001 (0.001)	0.055	0.0003 (0.001)	0.53
Triceps skinfold (mm)	-0.030 (0.089)	0.922^{+}	NA	NA	-0.04 (0.049)	0.42	-0.083 (0.035)	0.015
Subscapular skinfold (mm)	-0.076 (0.063)	0.228	NA	NA	0.007 (0.041)	0.85	-0.025 (0.027)	0.35

The models were adjusted for potential confounders: In all cohorts we adjusted for sex, physical inactivity and breastfeeding. ALSPAC and GENDAI were additionally adjusted for Tanner stage while GENDAI peri-adolescents were further adjusted for age. Beta coefficients represent the effect of each extra minor allele. P* values are from log transformed variables. NA: Not available.

Table VI. Number of obese children included, stratified by genotype and breastfeeding category.

		GENDAI			ALSPAC 11–12 years			GENESIS				
	10-12 years			1				2-3 years			3–4 years	
	ТТ	TA	AA	ТТ	TA	AA	ТТ	TG	GG	ТТ	TG	GG
Breastfeeders (BF)	19	24	7	38	84	29	10	8	1	15	32	12
Non-breastfeeders (N-BF)	5	6	4	30	52	21	7	9	4	14	18	13
Ratio BF/N-BF	3.8	4	1.75	1.27	1.61	1.38	1.43	0.9	0.25	0.9	1.8	0.9

In summary, our findings indicate that breastfeeding may exert a modifying effect on the relationship between FTO variants and adiposity indices
in Greek children from the ages of three upwards.
Longitudinal data are needed in order to evaluate
whether the breastfeeding protection on the FTOinfluenced phenotype is maintained beyond adolescence and whether the breastfeeding protection is
also associated with other metabolic and inflammatory markers.

Gene polymorphisms, breast-feeding, and development of food sensitization in early childhood

Xiumei Hong, MD, PhD,^a Guoying Wang, MD, PhD,^a Xin Liu, MD, PhD,^a Rajesh Kumar, MD, MS,^d Hui-Ju Tsai, PhD,^{a,c} Lester Arguelles, PhD,^a Ke Hao, PhD,^e Colleen Pearson, BA,^b Kathryn Ortiz, BA,^b Anthony Bonzagni, BA,^b Stephanie Apollon, BA,^b Lingling Fu, MS,^b Deanna Caruso, MS,^a Jacqueline A. Pongracic, MD,^d Robert Schleimer, PhD,^f Patrick G. Holt, DSc,^g Howard Bauchner, MD,^b and Xiaobin Wang, MD, ScD^a Chicago, Ill, Boston, Mass, Zhunan, Taiwan, and Perth, Australia

Food sensitization (FS) in early childhood, which is defined by in vitro measurements of food-specific IgE (ie, specific IgE >0.35 kUA/L to a food allergen), is an important precursor of food allergy and other allergic diseases

FS defined at the age of 2 years or beyond is much more likely to represent stable/ persistent FS.

The follow-up visits are scheduled at 6 to 12 months and 2, 4, and 6 years, which is consistent with the pediatric primary care visit schedule.

TABLE I. Population characteristics of 970 children from the Boston Birth Cohort stratified by breast-feeding status

Variable	Never breast-fed (n = 231)	Ever breast-fed (n = 739)	<i>P</i> value*
Maternal age (y)	27.7 ± 6.4	28.9 ± 6.2	.01
Maternal BMI (kg/m ²)	26.8 ± 6.0	26.6 ± 6.4	.66
Child's age (y)	2.5 ± 2.3	2.6 ± 2.2	.73
Maternal smoker during pregnancy	56 (24.2)	40 (5.4)	<.001
Maternal smoker after delivery	91 (39.4)	77 (10.4)	<.001
Maternal race			<.001
African American	133 (57.6)	439 (59.4)	
White	31 (13.4)	26 (3.5)	
Hispanic	39 (16.9)	186 (25.2)	
Other	28 (12.1)	88 (11.9)	
Maternal education			.001
Primary or secondary	88 (38.1)	215 (29.1)	
High school	88 (38.1)	257 (34.8)	
College or greater	55 (23.8)	267 (36.1)	
Household income at			.11
visits			
<\$30,000	110 (47.6)	324 (43.8)	
≥\$30,000	22 (9.5)	110 (14.9)	
Unknown	99 (42.9)	305 (41.3)	
Maternal history of allergy, yes	95 (41.1)	255 (34.5)	.19
Paternal history of allergy, yes	45 (19.5)	123 (16.6)	.45
Family history of allergy, yes	118 (51.1)	330 (44.7)	.23
Child's sex, boy (%)	124 (53.7)	362 (49.0)	.24
Preterm birth	65 (28.1)	189 (25.6)	.49
Parity, first born	89 (38.5)	304 (41.1)	.53
Cesarean section	80 (34.6)	236 (31.9)	.62
Pets in the first year, yes	47 (20.3)	112 (15.2)	.13
Detectable CBIgE†	119 (51.5)	398 (53.9)	.68
Allergic disease in the first 4 mo;	43 (18.6)	121 (16.4)	.71

In early childhood specific IgE concentrations in plasma for each of 8 food allergens (egg white, cow's milk, peanut, soy, shrimp, walnut, wheat, and cod) were measured with ImmunoCAP at Quest Diagnostics according to the manufacturer's prescribed protocol.

The detection limit was 0.35 to 100 kUA/L. FS was defined as a specific IgE level of 0.35 kUA/L or greater to any of the 8 food allergens.

Ever breast-fed children were more likely to have a nonsmoking mother who was Hispanic, was older at delivery, and had a higher education level than never breast-fed children

> J ALLERGY CLIN IMMUNOL AUGUST 2011

TABLE II. Association between breast-feeding and FS in 970 children from the Boston Birth Cohort

				Crude			Adjusted*	
Variable	No.	FS (%)	OR	95% CI	<i>P</i> value	OR	95% CI	<i>P</i> value
All children								
Breast-feeding								
Never breast-fed	231	29.4	Reference			Reference		
Ever breast-fed	739	39.6	1.6	1.1-2.2	.005	1.5	1.1-2.1	.019
Exclusive breast-feedin	g duration†							
Never breast-fed	231	29.4	Reference			Reference		
<4 mo	484	38.4	1.5	1.1-2.1	.019	1.5	1.0-2.2	.034
≥4 mo	200	40.4	1.6	1.1-2.4	.022	1.6	1.1-2.5	.029
Children <2 y								
Breast-feeding								
Never breast-fed	139	30.2	Reference			Reference		
Ever breast-fed	414	36.2	1.3	0.9-2.0	.198	1.1	0.7-1.8	.616
Exclusive breast-feedin	g duration†							
Never breast-fed	139	30.2	Reference					
<4 mo	291	35.7	1.3	0.8-2.0	.259	1.1	0.7-1.8	.743
≥4 mo	97	36.1	1.3	0.8-2.3	.345	1.2	0.7-2.2	.573
Children ≥2 y								
Breast-feeding								
Never breast-fed	92	28.3	Reference			Reference		
Ever breast-fed	325	44.0	2.0	1.2-3.3	.007	2.3	1.3-4.1	.003
Exclusive breast-feedin	g duration†							
Never breast-fed	92	28.3	Reference			Reference		
<4 mo	193	42.5	1.9	1.1-3.2	.022	2.4	1.3-4.3	.005
≥4 mo	103	43.7	2.0	1.1-3.6	.026	2.6	1.3-5.0	.006

^{*}Adjusted by maternal age at delivery, family history of allergy, maternal education, maternal smoking during pregnancy, maternal smoking after delivery, child's age when FS was defined, sex, ancestral proportion, pets in the first year, and allergic disease during the first 4 months of life. †Fifty-five ever breast-fed children have missing data on exclusive breast-feeding duration.

The prevalence of FS in breast-fed children (39.6%) was higher than that for never breast-fed children. FS was stronger in children aged 2 or more years

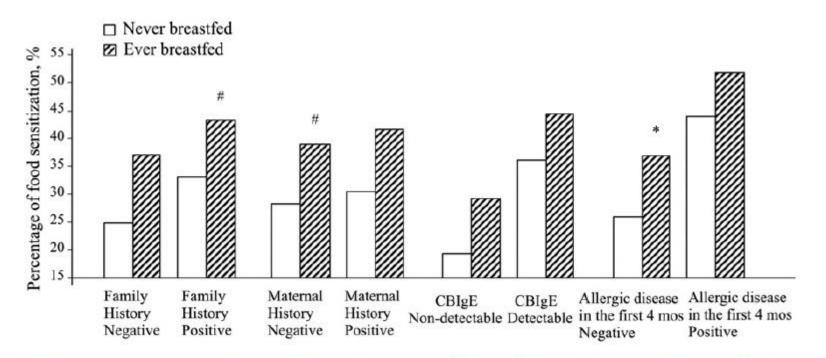


FIG 1. Plot for the association between breast-feeding and FS in 970 children from the Boston Birth Cohort

The relationship between the 2 breast-feeding measures and FS did not vary by family history of allergy, which indicated no effect modification. Similar results were found for the other 2 early signs of allergy

TABLE III. Gene-breast-feeding interactions on FS in 970 children from the Boston Birth Cohort

SNP*	Genotype	No. (FS [%])		BF-FS association †		P value for
		Not BF	BF	OR (95% CI)	<i>P</i> value	interaction
IL12RB1						
rs425648	GT+TT	57 (40.4)	189 (31.7)	0.6 (0.3-1.4)	.252	.0007‡
	GG	174 (25.9)	550 (42.4)	2.0 (1.4-3.1)	.0005	
IL-13 receptor α ge	ene (IL13RA1)					
rs2495637	AA	29 (48.3)	60 (26.7)	0.2 (0.1-0.8)	.026	.004
	GG+GA	202 (26.7)	678 (40.9)	1.8 (1.2-2.6)	.003	
rs2495619	TT+CT	46 (43.5)	123 (38.2)	0.7 (0.3-1.6)	.433	.035
	CC	185 (25.9)	614 (39.9)	1.9 (1.3-2.8)	.002	
TSLP		, ,	, ,	, ,		
rs3806933	CC	109 (36.7)	342 (37.7)	0.9 (0.6-1.5)	.777	.006
	CT+TT	121 (23.1)	396 (41.4)	2.4 (1.4-4.0)	.0008	
TLR9		, ,	, ,	, ,		
rs352140	CC	83 (36.1)	337 (35.9)	0.9 (0.5-1.6)	.812	.012
	CT	108 (27.8)	296 (41.2)	2.0 (1.2-3.4)	.012	
	TT	40 (20.0)	106 (47.2)	4.7 (1.5-14.9)	.009	
IL4				, , ,		
rs2243250	CT+CC	150 (32.0)	467 (34.7)	1.1 (0.7-1.7)	.692	
	TT	80 (25.0)	268 (48.5)	2.9 (1.5-5.4)	.001	.022

TABLE IV. Gene-environment interaction between exclusive breast-feeding duration and *IL12RB1*, *TLR9*, and *TSLP* SNPs on FS in 970 children from the Boston Birth Cohort

II 12DD1

				IL12RB1			
	rs425648 = GG			rs425648 = GT/TT			_
Duration*	No. (FS [[%]) C	OR (95% CI)†	No. (FS [%])	OI	R (95% CI)†	P for interaction
Never BF	174 (25	.9)	Reference	57 (40.4)]	Reference	.0007‡
<4 mo	358 (40	.2) 1	.9 (1.3-3.0)	126 (33.3)	0.	7 (0.3-1.5)	
≥4 mo	153 (43	.8) 2	.4 (1.5-4.0)¶	47 (27.7)	0.	4 (0.2-1.1)	
				TSLP			
		rs3806933 = CC			rs3806933 = CT/TT		
Duration*	No. (FS [[%]) C	OR (95% CI)†	No. (FS [%])	OF	R (95% CI)†	P for interaction
Never BF	109 (36	.7)	Reference	121 (23.1)	1	Reference	.001‡
<4 mo	226 (38	.1)	1.0 (0.6-1.7)	258 (38.8)	2.2	2 (1.3-3.7)	
≥4 mo	91 (33	.0)).7 (0.4-1.4)	108 (46.3)	3.1	1 (1.7-5.8)¶	
				TLR9			
	rs352140 = CC		rs352140 = CT		rs352140 = TT		
Duration*	No. (FS [%])	OR (95% CI)†	No. (FS [%])	OR (95% CI)†	No. (FS [%])	OR (95% CI)†	P for interaction

Reference

1.7 (1.0-3.1)

2.1 (1.0-4.0)§

108 (27.8)

187 (39.0)

84 (40.5)

40 (20.0)

70 (38.6)

31 (64.5)

Reference

3.3 (1.0-10.9)

13.2 (3.0-57.3)¶

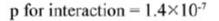
.0007‡

Never BF

<4 mo

≥4 mo

83 (36.1)

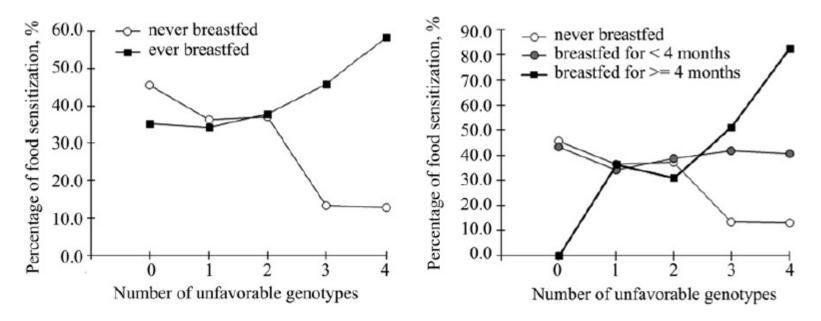

227 (37.9)

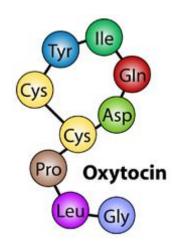
85 (30.6)

Reference

1.1 (0.6-2.0)

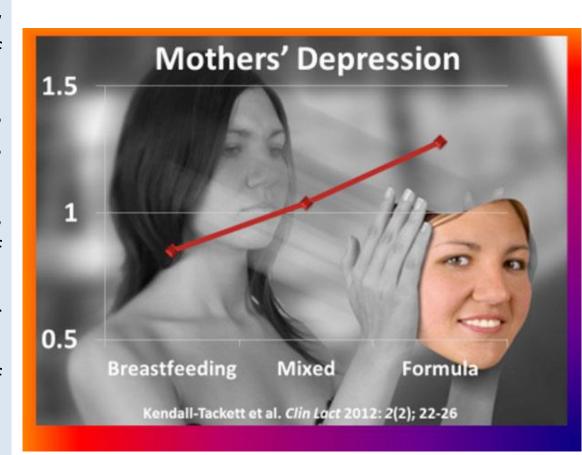
0.8 (0.4-1.5)




FIG 2. Gene-environment interaction effect between breast-feeding and the number of unfavorable genotypes of the *IL12RB1* (rs425648), *TSLP* (rs3806933), and *TLR9* (rs352140) genetic variants on FS in 970 children from the Boston Birth Cohort. The unfavorable genotype is defined as that for which breast-feeding increased the risk of FS, which is GG for rs425648, CT/TT for rs3806933, and the Tallele for rs352140.

Breast-feeding tended to be associated with a decreased risk of FS in children carrying 0 unfavorable genotypes; this association was attenuated with an increasing number of unfavorable genotypes and then was significantly reversed in children carrying 3 or more unfavorable genotypes.

This led to a strengthened gene–breast-feeding interaction (P for interaction 5 7.5 3 1026) and gene-exclusive breast-feeding duration interaction (P for interaction 5 1.4 3 1027) on FS


Genetic variation in oxytocin rs2740210 and early adversity associated with postpartum depression and breastfeeding duration

- Oxytocin is a nine-amino acid peptide with a highly conserved chemical structure across mammalian species.
- ☐ It is known for its hormonal functions during labor, where it causes uterine contractions, and during lactation, where it causes contractions of the myoepithelial cells surrounding the alveoli to induce milk letdown in response to infant suckling during breastfeeding.
- □ Oxytocin also acts as a neurotransmitter in the brain and is released in brain regions that are activated during parturition

- Epidemiological studies show that as many as 10–20% of mothers develop depression during the first few weeks after birth that often resolves by 6–12months postpartum.
- Postpartum depression is associated with greater risk of parenting problems, with negative consequences for cognitive, emotional and behavioral development of the infant and also with reduced duration or likelihood of breastfeeding

In this study, the authors ask whether

- oxytocin gene and receptor polymorphisms (OXT rs2740210 and rs4813627, and OXTR rs237885) are associated with breastfeeding occurrence and duration during the first year postpartum;
- 2. early adversity and maternal depression are associated with breastfeeding duration and
- 3. maternal depression mediates the effects of early adversity on breastfeeding, and whether these same OXT-related polymorphisms moderate this mediation.

Table 1: Overview of the allele distribution of *OXT rs2740210* and *rs4813625* and *OXTR rs237885* and their associations with the occurrence of breastfeeding at 3, 6 and 12 months postpartum in the Hamilton and Montreal samples

Genotype	Exclusive breastfeeding 3 months	Exclusive breastfeeding 6 months	Any breastfeeding 3 months	Any breastfeeding 6 months	Any breastfeeding 12 months	Group comparisons
Hamilton sample OXT rs2740210 AA (20), CA (77), CC (104) OXT rs4813625 AA (44), AG (71), GG (44) OXTB rs227895 CC (41), CC (72)	$\chi^2 = 4.68$, df = 1, P = 0.022	$\chi^2 = 6.43$, df = 1, P = 0.010			$\chi^2 = 4.05$, df = 1, P = 0.033	>Proportions of mothers with an A allele (AA/AC) breastfeed at these time points ns
OXTR rs237885 GG (41), CG (72), CC (49) Montreal sample OXT rs2740210 AA (12), CA (63), CC (76) OXT rs4813625 AA (45), AG (74), GG (34)	$\chi^2 = 7.735$, df = 2, P = 0.021		$\chi^2 = 7.265$, df = 2, P = 0.026		$\chi^2 = 3.581$, df = 1, P = 0.074	> Proportions of mothers with an A allele (AA/AG) breastfeed at these time
OXTR rs237885 GG (37), CG (68), CC (47)					$\chi^2 = 4.844$, df = 2, P = 0.089	points

There were no significant associations between exclusive or any breastfeeding and depression and OXT rs4813627 and OXTR rs237885. Thus, all further analyses were performed only on data using OXT rs2740210.

Early life adversity

- ☐ The self-report Childhood Trauma

 Questionnaire (CTQ) was used for

 measuring childhood abuse experiences
- It consists of 28 items that assess early adverse experiences (physical, emotional and sexual abuse and emotional and physical neglect) during childhood and adolescence.
- It quantifies the frequency of these experiences on a 5-point scale (from 0=never to 5=very often).
- Cutoff scores define the severity of the early adverse experiences (none or minimal, minor, moderate and severe)

Maternal mood

The Center for Epidemiological Studies Depression Scale (CES-D) (Radloff 1977) was used to assess maternal mood at 6months postpartum.

This self-assessment scale has 20 items in a 4-point response format between 0 and 3, for an overall score ranging from 0 (no depression) to 60 (highest level of depression).

Scores of 27 or more indicate a major depression

Table 2: Means and standard deviations of breastfeeding duration, demographic variables, early experience (CTQ) and depression (CES-D) scores in mothers as a function of *OXT rs2740210* genotype in the (a) MAVAN Hamilton sample and (b) Montreal replication sample

(a)	AA (n = 14-20)	CA (n = 58-77)	CC (n = 79 - 104)	Group comparisons
Breastfeeding duration (weeks)	31.57 (20.87)	29.18 (18.43)	23.93 (18.28)	ns
Birth weight (g)	3620 (329)	3552 (591)	3395 (451)	$F_{2.166} = 2.650, P = 0.074$
Maternal age	30 (5.04)	30 (5.08)	30 (5.24)	ns
Family income*	14.13 (2.16)	13.94 (3.64)	13.45 (4.04)	ns
Maternal education [†]	15.65 (2.47)	15.96 (3.01)	16.08 (3.04)	ns
CTQ scores during pregnancy	1.41 (0.53)	1.51 (0.62)	1.50 (0.56)	ns
CES-D scores at 6 months postpartum	27.29 (10.25)	26.16 (9.58)	26.72 (10.54)	ns
Partner (% yes)	85	85	80	ns
Parity (% primiparae)	31	29	32	ns
Boys (%)	69	51	65	ns

	OXT rs2740210				
(b)	AA (n = 9-12)	CA (n = 43 - 63)	CC (n=63-76)	Group comparisons	
Breastfeeding duration (weeks)	31.75 (19.7)	22.85 (19.02)	27.95 (20.23)	ns	
Birth weight (g)	2918 (438)	3187 (357)	3273 (385)	$F_{2,144} = 4.404, P = 0.014$	
Maternal age	29.8 (8.47)	28.96 (4.03)	29.01 (4.51)	ns	
Low SES and low education (%) [‡]	22.2	19.3	26.9	ns	
CTQ at 24 months postpartum	1.26 (0.31)	1.38 (0.42)	1.51 (0.57)	ns	
CES-D scores at 6 months postpartum	10.58 (10.63)	8.66 (7.56)	11.95 (9.61)	ns	
EPDS scores 6 months	4.11 (3.76)	4.74 (3.47)	5.95 (4.57)	ns	
Boys (%)	25	42.9	51.3	ns	

SES, socioeconomic status.

^{*}Combined family income during pregnancy, where 12 = at least \$40000, 13 = between \$40000 and \$50000, 14 = between \$50000 and \$60000 and 15 = between \$60000 and \$80000 per year.

[†]Maternal education, where 15 = high school (HS) diploma + 1 year of college or trade, 16 = HS diploma + diploma in trade or college, 17 = HS diploma plus some university but without completion and 18 = Bachelor degree.

Table 3: Correlations between breastfeeding, maternal demographic variables, early adversity (CTQ) and depression (CES-D) in the (a) Hamilton sample and (b) Montreal sample

(a)*	Breastfeeding duration (weeks)	Birth weight (g)	Maternal age	Family income	Maternal education	CTQ scores
Birth weight (g) Maternal age	0.002 0.257**	-0.042				
Family income Maternal education	0.164* 0.304**	-0.089 -0.041	0.481** 0.529**	0.465**		
CTQ scores during pregnancy CES-D scores at 6 months postpartum	-0.189* -0.216**	-0.01 -0.04	-0.081 -0.223**	-0.111 -0.159	-0.200** -0.237**	0.455**

(b) [†]	Breastfeeding duration (weeks) [‡]	Birth weight (g)	Maternal age	SES	CTQ scores
Birth weight (g) Maternal age SES CTQ scores at 24 months postpartum CES-D scores at 6 months postpartum	0.103 0.243** 0.170* 0.004 -0.173*	0.029 0.112 0.093 0.02	0.156* -0.087 -0.156*	-0.136 -0.329**	0.337**

They found significant associations between the two variants of OXT rs2740210 (CC vs. AA/AC carriers) and exclusive breastfeeding at 3 and 6months postpartum (χ 2 =4.68, df=1, P =0.022 and χ 2 =6.43, df=1, P =0.010) as well as partial breastfeeding at 12 months postpartum (χ 2 =4.05, df=1,P =0.033).

Duration of breastfeeding correlated significantly with maternal age (r = 0.257), CTQ score (r = -0.189) and CES-D score (r = -0.216).

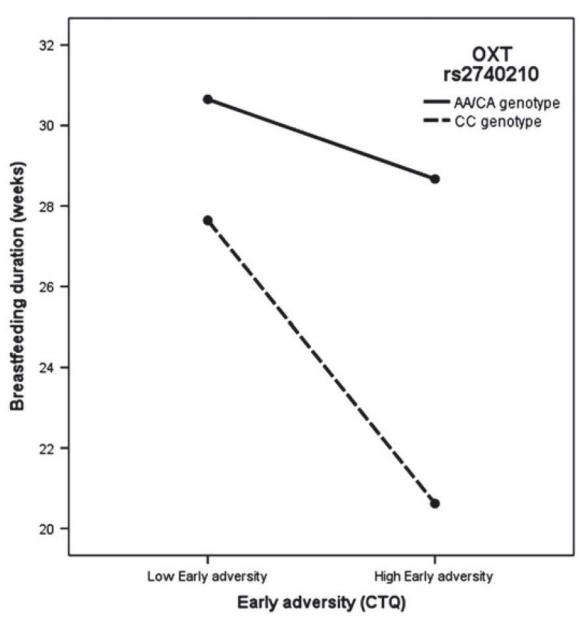


Figure 1: Interaction between OXT rs2740210 and early adversity on breastfeeding duration during the first postpartum year in mothers (primary sample, n = 127). In mothers possessing the CC genotype, high early adversity is associated with lower breastfeeding duration. Breastfeeding duration

Thus, OXT rs2740210 moderates the duration of breastfeeding in the context of early adversity (high levels on the CTQ scale): mothers who score higher on the CTQ breastfeed longer [38.6 (SD 19.8) weeks] if they possess the AA/AC genotype and breastfeed for a shorter duration [20.6 (SD 17.3) weeks] if they are homozygous for the C allele. This model explained 7.6% of the variance in breastfeeding duration.

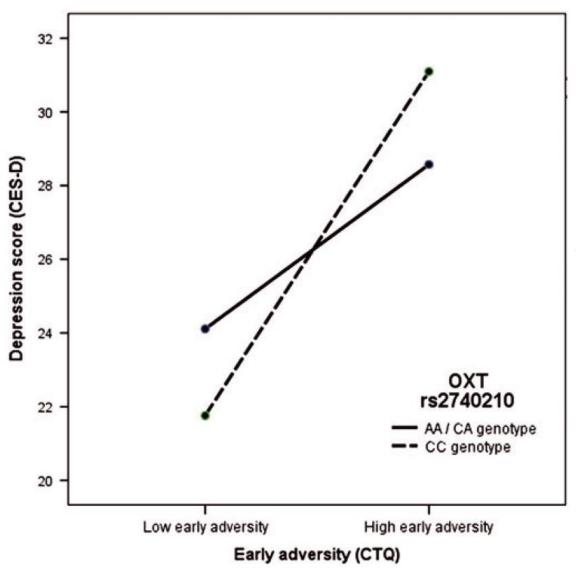


Figure 2: Interaction between OXT rs2740210 genotype and early adversity on CES-D depression scores at 6 months postpartum in mothers (primary sample, n=134). In mothers who carry the CC genotype, high adversity is associated with higher postpartum depression.

This model explained 23.2% of the variance in depression scores.

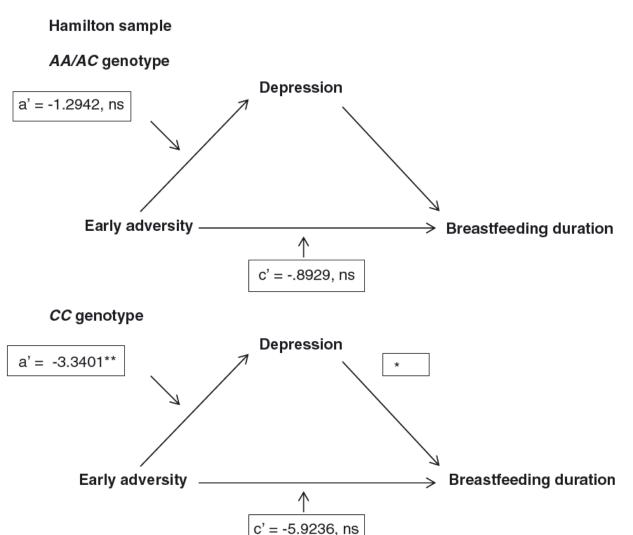
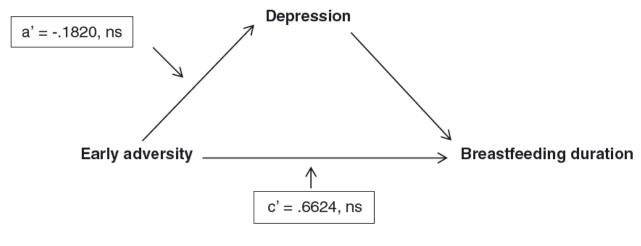



Figure 3: Moderated mediation model (PROCESS model 8) (Hayes 2013) of the relationship between early experience, depression and breastfeeding duration and its moderation by OXT rs2740210 genotype (CC genotype) in the Hamilton sample. This model tests whether early adversity and the OXT rs2740210 genotype (CC vs. AA/AC genotypes) interactively influence the mediator depression, which then influences the outcome variable breastfeeding duration. In this model (n = 148), there was no significant direct association of CTQ x OXT rs2740210 [neither of *CC* (c' = -5.9236, ns) nor *AA/AC* (c' = -0.8929, ns) genotypes] on breastfeeding duration. However, there was a significant indirect path: the association between early adversity on breastfeeding duration was mediated through mothers' depression, but only among women possessing the CC genotype,

Montreal sample AA/AC genotype

CC genotype

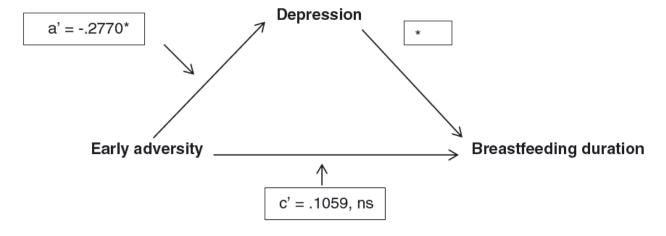


Figure 4: Moderated mediation model (PROCESS model 8) (Hayes 2013) of the relationship between early experience, depression and breastfeeding duration and its moderation by OXT rs2740210 genotype (CC genotype) in the Montreal sample. In this model (n=111), there was no significant direct association of CTQ x OXT rs2740210, but there was a significant indirect path: as in the Hamilton sample, the association between early adversity on breastfeeding duration was mediated through mothers' depression, but only among women possessing the CC genotype, * $P \le 0.05$ [effect a' (unstandardized regression coefficients) = -0.2770*, 95% CI = -0.7987 to -0.0348] and not in the women with the AA/AC genotype (a' = -0.1820, ns).

Discussion

The main findings of this study suggest that exposure to early life adversity in family of origin was associated with elevated depression levels in the mothers at 6 months postpartum; depression levels were, in turn, associated with reduced breastfeeding duration across the first postpartum year. Moreover, variants in the OXT rs2740210 moderated the effects of early adversity on depression, such that mothers who experienced early adversity showed increased depression and reduced breastfeeding if they possessed the CC genotype of OXT rs2740210 but not if they possessed the A allele (AA/AC genotypes). Thus, depression plays an important role in determining the relationship between early adversity and breastfeeding outcome, but only among women who are homozygous for the C allele. The mechanism behind the association between OXT genotype and breastfeeding is less clear. OXT rs2740210 may be linked to breastfeeding performance through its association with the milk ejection reflex and to the oxytocin release pattern which is associated with the amount of milk expressed during a breastfeeding session. Mothers carrying at least one A allele may have amore efficient milk release in response to the suckling stimulus to facilitate further breastfeeding.

OXT rs2740210 may also associate with breastfeeding beyond 'lactation' through an effect on

maternal behavior, i.e. an effect moderated by brain oxytocin.

Allergy

ORIGINAL ARTICLE

EPIDEMIOLOGY AND GENETICS

FADS gene cluster modulates the effect of breastfeeding on asthma. Results from the GINIplus and LISAplus studies

M. Standl¹, S. Sausenthaler¹, E. Lattka², S. Koletzko³, C.-P. Bauer⁴, H.-E. Wichmann^{1,5}, A. von Berg⁶, D. Berdel⁶, U. Krämer⁷, B. Schaaf⁸, I. Lehmann⁹, O. Herbarth¹⁰, N. Klopp², B. Koletzko³ & J. Heinrich¹ for the GINIplus* and LISAplus[†] Study Group

Table 1 Basic characteristics of the study population

	LISAplus (n = 789)	GINIplus $(n = 1456)$	Total (n = 2245)
Boys	56%	50%	52%
Intervention group	0%	50%	32%
High maternal education	58%	50%	53%
Presence of older siblings	47%	48%	48%
Study centre			
München	53%	56%	55%
Leipzig	25%	0%	9%
Bad Honnef	13%	0%	5%
Wesel	9%	44%	32%
Breastfeeding (BF)			
Number of months of exclusive BF	18%	26%	23%
1–2	13%	11%	12%
3–4	18%	16%	17%
5–6	51%	47%	48%
Asthma (DD)	9%	12%	11%
Atopic asthma (DD)	7%	8%	8%
Nonatopic asthma (DD)	1%	3%	2%

Table 2 Characteristics of the SNPs in the FADS gene cluster

SNP			Number of subje	cts with		
	Alleles (major/minor)		Genotype (%)		Allele (%)	
	1/2	N	11	12/22	1	2
rs174545	G/C	2047	931 (45%)	1116 (55%)	2757 (67%)	1337 (33%)
rs174546	G/A	2076	946 (46%)	1130 (54%)	2799 (67%)	1353 (33%)
rs174556	G/A	2069	1033 (50%)	1036 (50%)	2927 (71%)	1211 (29%)
rs174561	A/G	2082	1040 (50%)	1042 (50%)	2951 (71%)	1213 (29%)
rs174575	C/G	2212	1236 (56%)	976 (44%)	3300 (75%)	1124 (25%)
rs3834458	T/del	2211	1016 (46%)	1195 (54%)	2995 (68%)	1427 (32%)

SNP, single-nucleotide polymorphisms.

Table 3 Prevalence of doctor-diagnosed asthma stratified by number of months of exclusive breastfeeding

	Number of months of exclusive BF	1–2	3–4	5–6		
	% (n/N)	% (n/N)	% (n/N)	% (n/N)	<i>P</i> -value*	
Asthma ev	ver (DD)					
No	86.0 (442/513)	87.0 (233/268)	89.0 (338/379)	91.0 (988/1085)	0.0172	
Yes	14.0 (71/513)	13.0 (35/268)	11.0 (41/379)	9.0 (97/1085)		

Table 4 Prevalence of doctor-diagnosed asthma stratified by genotype

	Asthma ever (DD)	
	% (n/N)	P-value*
rs174545		
Allele 12/22	10.5 (117/1116)	0.3372
Allele 11	11.9 (111/931)	
rs174546		
Allele 12/22	10.4 (118/1130)	0.3105
Allele 11	11.9 (113/946)	
rs174556		
Allele 12/22	10.0 (104/1036)	0.1190
Allele 11	12.3 (127/1033)	
rs174561		
Allele 12/22	10.1 (105/1042)	0.1790
Allele 11	12.0 (125/1040)	
rs174575		
Allele 12/22	10.2 (100/976)	0.4944
Allele 11	11.2 (139/1236)	
rs3834458		
Allele 12/22	10.0 (120/1195)	0.2062
Allele 11	11.8 (120/1016)	

Figure 1 shows the association between asthma prevalence and the number of months of exclusive BF stratified by genotype for each of the six SNPs. The asthma prevalence is reduced in children who were exclusively breastfed for at least 3 months and are carrying the minor allele, whereas no effect is observed in homozygous major allele carriers.

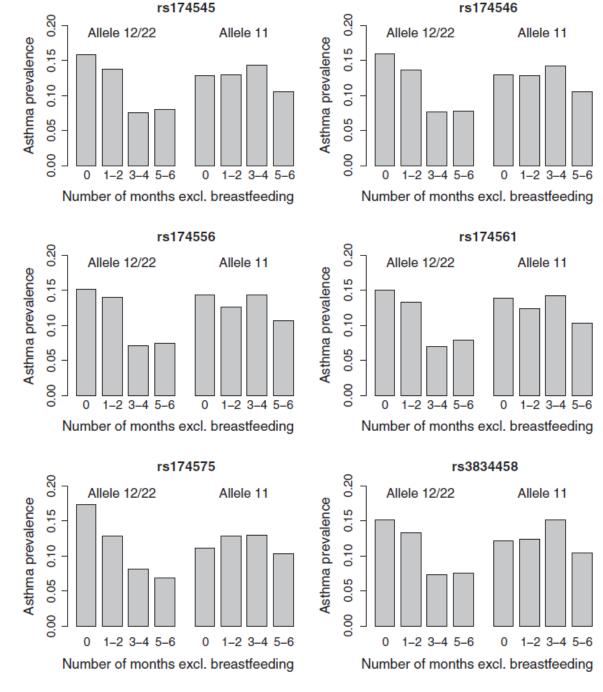


Figure 1 Asthma prevalence stratified by FADS genotype and breastfeeding (1: major allele, 2: minor allele).

Table 5 Results of logistic regression models of breastfeeding (BF) on asthma stratified by genotype, adjusted for gender, study centre, maternal education level, study (GINI intervention, GINI nonintervention, LISA) and presence of older siblings (reference category: never exclusive breastfeeding)

		Never exclusive BF	1-2 months exclu	sive BF	F 3-4 months exclusive BF		5–6 months exclus	sive BF
	Ν	aOR	aOR (95% CI)	<i>P</i> -value*	aOR(95% CI)	<i>P</i> -value*	aOR (95% CI)	<i>P</i> -value*
rs174545								
Allele 12/22	1073	1	0.89 (0.48, 1.66)	0.7120	0.38 (0.19, 0.76)	0.0062	0.41 (0.24, 0.69)	0.0007
Allele 11	905	1	1.33 (0.61, 2.89)	0.4686	1.47 (0.75, 2.92)	0.2639	1.07 (0.60, 1.91)	0.8177
rs174546								
Allele 12/22	1085	1	0.90 (0.48, 1.68)	0.7462	0.38 (0.19, 0.77)	0.0073	0.41 (0.24, 0.68)	0.0006
Allele 11	919	1	1.33 (0.62, 2.89)	0.4640	1.48 (0.75, 2.92)	0.2600	1.09 (0.61, 1.94)	0.7725
rs174556								
Allele 12/22	997	1	0.98 (0.51, 1.87)	0.9413	0.37 (0.18, 0.80)	0.0107	0.41 (0.24, 0.72)	0.0018
Allele 11	1000	1	1.16 (0.56, 2.38)	0.6947	1.37 (0.73, 2.57)	0.3308	0.95 (0.56, 1.62)	0.8609
rs174561								
Allele 12/22	1003	1	1.02 (0.53, 1.95)	0.9624	0.39 (0.18, 0.83)	0.0148	0.47 (0.27, 0.81)	0.0065
Allele 11	1008	1	1.14 (0.55, 2.34)	0.7224	1.38 (0.73, 2.59)	0.3200	0.94 (0.55, 1.59)	0.8039
rs174575								
Allele 12/22	934	1	0.81 (0.41, 1.59)	0.5388	0.42 (0.20, 0.88)	0.0224	0.32 (0.18, 0.57)	0.0001
Allele 11	1204	1	1.44 (0.74, 2.81)	0.2844	1.32 (0.72, 2.41)	0.3706	1.17 (0.71, 1.94)	0.5372
rs3834458								
Allele 12/22	1149	1	0.94 (0.51, 1.73)	0.8338	0.40 (0.20, 0.81)	0.0104	0.42 (0.25, 0.71)	0.0011
Allele 11	988	1	1.25 (0.59, 2.68)	0.5609	1.44 (0.75, 2.76)	0.2745	1.07 (0.61, 1.86)	0.8189

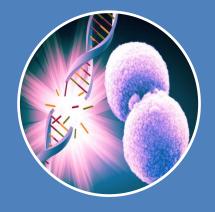
aOR, adjusted odds ratios; 1, major allele; 2, minor allele.

Individuals carrying the minor allele have a significant decreased asthma risk if they are exclusively breastfed for 3 or 4 months or more than 5 months

^{*}Estimates reaching significance after correcting for multiple testing ($\alpha_{corr} = 0.05/2 = 0.025$) are marked in bold.

Mechanism

The underlying biological mechanism that causes the association between BF, FADS1 FADS2 genotype and asthma is not completely clear although there are a number of biologically plausible indicators.



Minor allele carriers have a lower proportion of products of the fatty acid metabolism and therefore a lower proportion of AA, a product of the n-6 pathway which may reduce the risk of asthma.

Conclusion

The association between **exclusive BF** and **asthma** is modified by the genetic variants of FADS genotypes in children. The results suggest that **only minor allele** carriers benefit from exclusive BF in regard to asthma development, while homozygous major allele carriers have no advantage in this respect.

This might explain the partly inconsistent results from previous studies on BF and asthma prevalence, which suggests the inclusion of genetic data in future studies.