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A B S T R A C T   

In Industry 4.0, the emergence of new information technology and advanced manufacturing technology (e.g., 
digital twin, and robot) promotes the flexibility and smartness of manufacturing systems to deal with production 
task fluctuation. Digital twin-driven manufacturing system with human-robot collaboration is a typical paradigm 
of intelligent manufacturing. When production task changes, manufacturing system reconfiguration with dy
namic opeartion task allocation between operator (human) and robot is a key manner to maintain the production 
efficiency of intelligent manufacturing system with human-robot collaboration. However, the differences be
tween operator and robot are neglected during reconfiguration of manufacturing system with human-robot 
collaboration. To promote the reconfiguration accuracy and production efficiency, a dynamic reconfiguration 
optimization method of intelligent manufacturing system with human-robot collaboration based on digital twin 
is proposed in this paper, which the different characteristics between operator and robot are considered during 
reconfiguration optimiztion. Firstly, a multi-objectives optimization model is constructed involving minimum 
production cost, minimum production time, and minimum idle time to assign operation tasks between operator 
and robot, where human factor is considered to ensure the production efficiency of operator. Second, non
dominated sorting genetic algorithm-II (NSGA-II) is adopted to solve the proposed dynamic reconfiguration 
optimization model. Finally, a case study is provided to demonstrate the effectiveness of the proposed reconfi
guration optimization method for intelligent manufacturing system with human-robot collaboration.   

1. Introduction 

In Industry 4.0 era [1,2], the production model gradually transforms 
from mass customization to mass personalization [3], which requires 
more flexible and intelligent manufacturing system. Human-robot 
collaboration [4–6] integrated with flexibility and smartness is suit
able for coping with production task fluctuation, where the configura
tion of manufacturing system with human-robot collaboration could be 
adapted dynamically, that is, reconfiguration of manufacturing system 
[7,8]. Besides, digital twin [9–11] is the key enabler to enhancing the 
reconfiguration efficiency and accuracy of manufacturing systems with 
human-robot collaboration. 

Reconfigurable manufacturing system (RMS) [12] was proposed two 
decades ago to cater to mass customization with the flexibility of part 
family [13]. The flexibility of manufacturing system can be divided into 

two aspects – scalability and convertibility. The scalability [14,15] of 
manufacturing system refers to improving the production throughout, 
which the convertibility within a specific part family is considered [16]. 
With the transformation of production mode, it is more important to 
improve the convertibility of manufacturing system. Reconfigurable 
machine tools (RMT) [17,18] as the key facility of RMS is a good attempt 
to increase RMS convertibility. Moreover, a concept of delayed recon
figuration named as D-RMS [19,20] was proposed to handle the RMS 
convertibility. It can maintain partial production activities during 
reconfiguration to reduce the negative influence of reconfiguration. 
Recently, with the development of robot technology, the flexibility of 
manufacturing derived from human-robot collaboration becomes 
increasingly important [21], which can integrate new information and 
communications technology (e.g. IoT [22], AI [23], Big data [24], 
Digital twin [9], etc.) more effectively and increase the accuracy of 
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reconfiguration resulting in higher productivity. However, the existing 
researches on human-robot collaboration prefer to address the issues 
about interaction between operator and robot (e.g., Gesture recognition 
[25], Measurement of trust [26], fluency evaluation [27], etc.). There is 
limited study focusing on the configuration changes due to production 
task fluctuation with the consideration of the different characteristics 
between operator and robot. Thus, a dynamic reconfiguration optimi
zation method of intelligent manufacturing system with human-robot 
collaboration based on digital twin is proposed in this paper. We 
consider the different characteristics between operator and robot are 
considered as well to optimize the operation task assignment process 
and increase productivity through high collaboration efficiency between 
operator and robot. 

The remainder of this paper is organized as follows: Section 2 re
views the related works. Section 3 analyzes the specific problem to be 
solved in this paper in detail. Section 4 elaborates on the proposed dy
namic reconfiguration optimization model that is solved by NSGA-II. 
Section 5 validates the proposed method through a case study. Section 
6 concludes this paper. 

2. Related works 

This section reviews the related works involving reconfigurable 
manufacturing systems, human-robot collaboration in manufacturing 
system, and digital twin of manufacturing system. 

2.1. Reconfigurable manufacturing systems 

In the scope of the traditional RMS, the most common reconfigura
tion manner is to adapt configuration function through modularity and 
integrability [28], that is, removing, replacing and adding modules with 
standard physical and soft interfaces. Bortolini et al. [7] proposed an 
optimization model for the dynamic management of RMS considering 
the dynamic changes of auxiliary module. It is a typical study that ap
plies the philosophy of the traditional RMS. Wang and Koren [14] 
studied the scalability planning method for RMS through the adaption of 
machine tools. Deif and ElMaraghy [15] explored a similar scalability 
issue. The concept of delayed reconfigurable manufacturing system 
(D-RMS) proposed by Huang et al. [19,20] also focused on the module 
changes to realize rapid convertibility. Besides, the module adaption can 
be used at machine level to complete reconfiguration of RMS as well. 
Wang et al. [17] proposed a decision tree-based configuration design 
method for RMT with dynamically changing the modules of RMT. 
Huang et al. [18] studied digital twin-RMT design based on modular 
structure. Morgan et al. [29] proposed smart RMT for catering to the 
requirement of industry 4.0. However, modular reconfiguration is not 
efficient and cost-effective for high diversity demand during the mass 
personalisation era. The reconfiguration philosophy should be expanded 
to explore a more intelligent and flexible way. Collaborative robots have 
the potential ability to make simple, quick, and cheap reconfiguration 
[21]. It is meaningful and necessary to investigate the reconfiguration 
method based on manufacturing system with human-robot collabora
tion for future industry. 

2.2. Human-robot collaboration in manufacturing system 

Recently, human-centric manufacturing gradually come into view 
when discussing futuristic industry [6], where human-robot collabora
tion in manufacturing system is the core topic. Lu et al. [30] proposed 
human-centric manufacturing system framework and human-centric 
human-robot collaboration framework for Industry 5.0. The core idea 
of Lu’s study is to focus on the operator’s comfort level with additional 
optimization objectives, which will be specified in the optimization 
model of this paper. Liu et al. [4] explored the application of remote 
human-robot collaboration based on cyber-physical system for a haz
ardous manufacturing environment. Li et al. [5] proposed proactive 

human-robot collaboration as a foreseeable informatics-based cognitive 
manufacturing to predict patio-temporal cooperation and Self-organize 
teamwork. Matheson et al. [21] reviewed the applications of 
human-robot collaboration in manufacturing and analyzed the future 
trends in human-robot collaboration. Also, as the enabler technology of 
manufacturing system with human-robot collaboration, the concept of 
human-cyber-physical systems (HCPS) [31] is discussed towards 
human-centric smart manufacturing. Hietanen et al. [32] proposed a 
depth-sensor and interactive Augmented Reality (AR) based model for 
monitoring manufacturing process to ensure safety during human-robot 
collaboration. Hashemi-Petroodi [33] focused on the design and control 
of hybrid human-robot collaborative manufacturing systems, where 
human and robot perform a variety of tasks (manual, automated, and 
hybrid tasks) in a shared workspace. Ansari et al. [34] addressed the 
collaboration issues between human and cyber physical production 
system(CPPS) from the angle of complementarity whereby human 
competences and CPPS autonomy together derive supplementary 
capability and reciprocal learning, which focused on the dominant or 
eligible conditions to solve a problem between human and CPPS. 

2.3. Digital twin-driven manufacturing system and human-robot 
collaboration 

The development of digital twin is symbolic progress of industry 4.0, 
which was proposed by Grieves in his production management lecture at 
the University of Michigan [35]. In the manufacturing domain, Tao et al. 
[36] proposed digital twin workshop with five dimension model as a 
new paradigm for industry 4.0. Liu et al. [37] addressed the scheduling 
problem of digital twin workshop, considering feature, process, and 
machine tools simultaneously. Tao et al. [38] summarized the 
state-of-the-art involving digital twin in industry. In addition, digital 
twin is suitable for enhancing the reconfigurability of manufacturing 
system. Huang et al. [18] build a digital twin of RMT for the rapidly 
changing configuration of RMT. Leng et al. [39] studied the digital 
twin-driven rapid reconfiguration method of manufacturing system 
through open architecture model. Cai et al. [40] integrated digital twin 
with AR to rapidly retrieve physical configuration into the virtual space 
for optimizing the configuration of manufacturing through simulation. 
As for digital twin-driven human-robot collaboration, Bilberg et al. [41] 
discusses an object-oriented event-driven digital twin of a flexible as
sembly cell coordinated with human-robot collaboration to operate 
dynamic skill-based tasks allocation between human and robot consid
ering traditional workload balance. Similarly, Lv et al. [42] proposed 
digital twin-based human-robot collaboration assembly framework im
proves the overall assembly efficiency and reduces the workload of 
human, which attempts to optimize the trajectory of robots and ensure 
the safety of human-robot collaboration assembly. Kousi [43] investi
gated the design and reconfiguration of human-robot collaborative as
sembly lines based on digital twin without consideration of the different 
characteristics between operator and robot. Liu et al. [44] investigated 
the cognitive digital twin-driven human-robot collaborative assembly to 
promote cognition of human-centric assembly based on augmented re
ality. Shi et al. [45] proposed a cognitive digital twin framework for 
manufacturing system with human-robot collaboration based on the 5 G 
communication network. 

Above all, RMS is a typical paradigm for intelligent manufacturing in 
the industry 4.0 era, in which the digital twin is a key enabler technology 
to enhance the effectiveness of intelligent manufacturing. The intro
duction of robot and the emergence of human-robot collaboration bring 
new issues when reconfiguration of manufacturing system. However, on 
the one hand, the existing studies associated with RMS generally ne
glects the active functions of the robot during reconfiguration, on the 
other hand, the investigations of human-robot collaboration focus more 
on intuition recognition and cooperative action between operator and 
robot. So far, the reconfiguration issue between operator and robot 
considering the different characteristics is rarely mentioned in the 
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existing literature, which is the gap to be filled in this paper. 

3. Problem analysis 

A typical manufacturing system with human-robot collaboration 
consists of one machine tool, one robot, one operator and other neces
sary components to complete a specific production task. The corre
sponding digital twin of manufacturing system with human-robot 
collaboration is shown in Fig. 1. Due to the seamless data transmission 
between physical space and virtual space, digital twin of manufacturing 
system with human-robot collaboration can track its operation states in 
a high-fidelity way and optimize the production process efficiently. 

The mission of manufacturing system is to complete production task 
that can be divided into several operation tasks according to some 
specific rules (e.g., Machining features, fixtures, etc.). A manufacturing 
system with human-robot collaboration will complete production tasks 
around the machine tools, which operator and robot will assist to 
complete these processes. Different operation tasks can be assigned to 
operator or robot resulting in different configurations of manufacturing 
system, that is, reconfiguration of manufacturing system, as shown in 
Fig. 2. 

Due to human factors and technology-driven robot, operator and 
robot show different efficiency and effectiveness when completing a 
specific work. In other words, operator and robot are not good at the 
same work. Generally, operator is good at creative works, however, 
robot is good at simple, repetitive work. The cooperation efficiency 
between operator and robot depends on the operation task assignment 
results, which determines the production efficiency of the corresponding 
manufacturing system. When production task changes, manufacturing 
system with human-robot collaboration should be reconfigured to meet 
the new requirements. How to determine the operation tasks assignment 
between operator and robot is the key problem to ensure the reconfi
guration effectiveness, which will be solved in this paper by optimizing 
operation tasks assignment considering the different characteristics of 
operator and robot. 

4. Dynamic reconfiguration optimization method 

The dynamic reconfiguration of manufacturing system with human- 
robot collaboration will be elaborated around operation tasks assign
ment optimization in this section. Firstly, the necessary assumption and 
nomenclature will be given. And then, the optimization model with 
multiple objectives will be presented. Finally, the adopted computation 
algorithm will be described in detail. 

4.1. Assumption and nomenclature 

To derive a simple yet insightful optimization model, the following 
assumptions are made for dynamic reconfiguration of manufacturing 
system with human-robot collaboration.  

(1) Only the main components in manufacturing system with human- 
robot collaboration are considered during optimization model
ling, including operator, robot, and machine tools.  

(2) The digital twin of manufacturing system with human-robot 
collaboration is already existing. Namely, the construction of 
digital twin is out of the scope of this paper and the optimization 
process is performed based on the existing digital twin 
framework. 

Fig. 1. Digital twin of manufacturing system with human-robot collaboration.  

Fig. 2. Reconfiguration of manufacturing system with human-robot collaboration.  

Fig. 3. Operation task classification.  
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(3) Production task changes have been already known in this paper. 
One production task can be divided to several operation tasks. 
The classification of operation tasks is around the human-robot 
collaboration. In other words, operation task can be divided 
into three types, including operation task only for operator, 
operation task only for robot, and operation task for both oper
ator and robot, as shown in Fig. 3. Operator is good at handling 
complex and creative operation tasks that could be done by 
operator only due to the work is out of the ability of robot, 

however, robot can execute simple and repetitive operation tasks 
better. Besides, some operation tasks should be completed by 
robot only (e.g. dangerous scenario, pollution, etc.).  

(4) Reconfiguration optimization is executed around the operation 
task assignment among the three types. The production task and 
operation tasks information are already given for optimization.  

(5) Production task dynamics is an iterative process. The dynamic 
reconfiguration optimization model is constructed based on one 
production task with several operation tasks.  

(6) One production task and the corresponding operation tasks 
should be entirely completed in the assigned manufacturing 
system.  

(7) There is an upper limit on the types of operation task assigned to 
operator. Namely, operator cannot handle infinite operation 
tasks due to the limitation of human factor. 

In addition, the nomenclature for the optimization model is given in 
below.  

O The operation tasks set for operator only 
R The operation tasks set for robot only 
B The operation tasks set for both of operator and robot, that is, human- 

robot collaboration operation tasks 
N The total types set of operation task 
CO

i The cost of operator when completing ith type of operation task 
CR

i The cost of robot when completing ith type of operation task 
λi Collaboration factor. Labelling the operation task assigned to operator or 

robot 
μ Operator factor. Counting the number of operation tasks assigned to 

operator. 
Taskmax The maximum types of operation task for operator 
Mass An extra-large number 
makespan Maximum completion time 
V Idle time between operator and robot 
TR Operation time of operation tasks for robot only 
TR

B Operation time of robot when handling operation tasks for both operator 
and robot 

TO Operation time of operation tasks for operator only 
TO

B Operation time of operators when handling operation task for both 
operator and robot 

TR
i The per operation time of robot when handling ith type of operation 

tasks 
TO

i The per operation time of operator when handling ith type of operation 
tasks 

Di The number of ith type of operation task 
λi Collaboration factor and Decision variable. Labelling the operation task 

assigned to operator or robot. 

λi =

{
1, Collaboration subtask assigned to robot

0, Collaboration subtask assigned to operator

}

Fig. 4. Idle time calculation.  

Fig. 5. Chromosome example.  

Fig. 6. Nondominated sorting and crowding distance sorting processes.  

Fig. 7. Offspring generation based on selection, crossover and mutation.  

Fig. 8. NSGA-II execution flowchart.  
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4.2. Mathematical model 

The mathematical model of dynamic reconfiguration for 
manufacturing system with human-robot collaboration contains three 
optimization objectives, including minimum operation cost, minimum 
operation time, and minimum idle time between operator and robot, as 
shown in Eqs. (1)–(3). In addition, the corresponding constraints can be 
referred to as Eq. (4) to (11). 

4.2.1. Minimize 

C =
∑

i∈O
DiCO

i +
∑

i∈R
DiCR

i +
∑

i∈B
Di
[
CR

i λi +CO
i (1 − λi)μ

]
(1)  

makespan = max
(
TR + TR

B,TO +TO
B

)
(2)  

V =
⃒
⃒
(
TR + TR

B

)
−
(
TO +TO

B

) ⃒
⃒ (3) 

s.t. 

O+R+B = N (4)  

O ∩ R = ∅&O ∩ B = ∅&B ∩ R = ∅ (5)  

TR =
∑

i∈B
DiTR

i (6)  

TO =
∑

i∈O
DiTO

i (7)  

TR
B =

∑

i∈B
DiTR

i λi (8)  

TO
B =

∑

i∈B
DiTO

i (1 − λi)μ (9)  

μ =

{
1,

(
∑

i∈O
1 +

∑

i∈B
(1 − λi)

)

≤ Taskmax

Mass, Otherwise

}

(10) 

The first objective aims at minimizing the total operation cost of 
operation tasks executed by human-robot collaboration referring to Eq. 
(1). The first item of Eq. (1) denotes the total operation cost of operation 
tasks that should be completed by operator only. The second item of Eq. 
(1) denotes the total operation cost of operation tasks that should be 
completed by robot only. The third item of Eq. (1) calculates the total 
operation cost of operation tasks that can be completed by both operator 
and robot. Besides, the operator factor μ in the third item is used to 
recognize how many types of operation tasks are assigned to operator, 
including the exclusive operation tasks for operator and collaborative 
operation tasks assigned to operator, which a penalty mechanism is 
adopted if the task types assigned to operator exceed the upper limit 
Taskmax referring to Eq. (10). 

The second objective denotes the minimum of maximum completion 
time of the assigned production task with specific operation tasks 
referring to Eq. (2), that is, minimum of makespan. The first item of Eq. 
(2) means the total operation time of robot to complete the exclusive 
operation tasks for robot and the collaborative operation tasks assigned 
to robot. The second item of Eq. (2) means the total operation time of 
operator to complete the exclusive operation tasks for operator and the 
collaborative operation tasks assigned to operator. Due to operator and 
robot will be activated at the same time when a new production task 
arrives, the maximum operation time of operator or robot is adopted as 
makespan in this paper. 

The third objective is constructed to address the idle issue between 
operator and robot according to Eq. (3). The completion time of operator 
and robot could be different resulting in idle time that do harm to pro
duction efficiency promotion. Namely, the less idle time, the better 
production efficiency. Here, the absolute value of the completion time 
differences between operator and robot is used to calculate the idle time 
as shown in Fig. 4. 

There are necessary constraints for the dynamic reconfiguration 
optimization model referring to Eqs. (4)–(10). Eq. (4) means the sum
mation of the exclusive operation tasks of operator and robot and the 
collaborative operation tasks, which ensure complete assignment of all 
operation tasks. Eq. (5) denotes the intersection among exclusive oper
ation task set for operator, exclusive operation task set for robot and 

Fig. 9. Digital twin of machining station.  

Fig. 10. Part family.  
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collaborative operation task set is an empty set, that is, every operation 
task will be assigned only once. Eqs. (6) and (7) present calculation 
details of the total operation time relevant to exclusive operation tasks 
for robot and operator respectively. Eqs. (8) and (9) calculate the 
operation time of collaborative operation tasks assigned to robot and 
operator respectively. 

4.3. Solution algorithm of optimization model 

The proposed dynamic reconfiguration optimization model is typical 
multiple objective optimization (MOO) problem. There are many suc
cessful algorithms for MOO problems, including evolutionary algo
rithms (e.g. NSGA, NSGA-II, etc.), tabu search, particle swarm 
optimization, etc. NSGA-II is the most popular solution algorithm for 
MOO problems in recent years [46]. NSGA-II can reduce the complexity 
of non-inferior sorting genetic algorithms with high computation effi
ciency and good convergence results. Therefore, NSGA-II is adopted in 
this paper to solve the proposed dynamic reconfiguration optimization 
model. 

The typical procedure of NSGA-II includes seven main steps, as 
shown in the following. 

Step 1. Coding. A chromosome of NSGA-II means a solution of 
operation task assignment, which is the combination operation task 
types tagged by operator or robot referring to collaboration factor λi. An 
example is given in Fig. 5. This coding example means that the 1st, 3rd, 
4th and 6th operation task (different types) are assigned to operator and 
the reminder types of operation task are assigned to robot. Although the 

types of operation task are denoted using a mathematical set, operation 
task sort will be executed firstly for computation convenience. 

Step 2. Population initialization. The initial population is generated 
randomly involving Q individuals. 

Step 3. Nondominated sorting and crowding distance sorting. The 
initial population is divided into several fronts according to the non- 
inferior solution level of each individual. When merging parent and 
offspring resulting in 2Q size, the population size should be modified to 
Q. The crowding distance sorting when including a specific front led to 
the new population size exceeding Q. Fig. 6 shows the sorting details. 

Step 4. Termination condition. If the maximum generation is 
reached, the optimization process is complete, and the Pareto optimal 
solution will be obtained; otherwise, switch to the next step. 

Step 5. Offspring population generation. Generating offspring pop
ulation through selection, crossover, and mutation, as shown in Fig. 7. 
Firstly, tournament selection is adopted to randomly select two in
dividuals from the parent population based on nondominated sorting 
and crowding distance sorting. Secondly, binary crossover algorithm is 
adopted to determine the crossover position randomly. Thirdly, poly
nomial mutation algorithm is used to randomly change specific genes of 
the parent chromosome. 

Step 6. Merge parent population and offspring population. Merge the 
parent population and the offspring population to obtain a new popu
lation with the size of 2Q. Again, go back to step 3 for fast non- 
dominated sorting. 

The flowchart of the adopted NSGA-II for dynamic reconfiguration 
optimization of manufacturing system with human-robot collaboration 
is shown in Fig. 8. 

5. Case study 

The implementation of the proposed dynamic reconfiguration 
method of manufacturing system with human-robot collaboration will 
be provided in this section to validate its effectiveness, which is based on 
a typical machining station consisting of one machining center, one 
industrial robot and one operator. The digital twin of the machining 
station is also constructed for monitoring its production activities and 
optimizing its configuration dynamically, as shown in Fig. 9. 

A specific part family is assigned to the machining station, as shown 
in Fig. 10. The corresponding production task is shown in Table 1, where 
the operation task details are given as well. The number behind the 
operation task name is the label of operation tasks respectively for 
computation convenience. 

Considering the different characteristics of human and robot, the 
operation tasks are classified into three types, including operation task 
for operator only, operation task for robot only, and operation task for 
both operator and robot, as shown in Table 2. In addition, the total 
quantity of each operation task is 100 according to Table 1. 

The operation cost per unit and operation time per unit based on the 
classification of operation tasks are given in Table 3. Moreover, the 
necessary information for optimization should be preset, including 
Taskmax = 5, Mass = 100. 

The optimization solution will be executed using NSGA-II. Preset 
necessary parameter of NSGA-II, that is initial population size = 50, 
Maximum iteration = 20. The computation is executed by Python on a 
laptop with 2.3 GHz CPU, 16 GB RAM. The convergence process is 
shown in Fig. 11, where the mean and variance of crowding distance are 

Table 1 
Production task information.  

Part no. Quantity Operation task 

Part 1  15  Unload from AGV (1); Workblank check (2); Upload to machine (3); Clamp part (4);  
Change tool (5); NC programming (6); Unload from machine (7); Burring (8); Clean (9);  
Inspection (10); Upload to AGV (11)  

Part 2 25  
Part 3 20  
Part 4 40  

Table 2 
Classification of given operation tasks.  

Operation task no. Operator only Robot only Both  

1   √  
2 √    
3   √  
4   √  
5   √  
6 √    
7   √  
8   √  
9  √   
10   √  
11   √  

Table 3 
Operation cost and time of operation tasks.  

Operation task 
type 

Operation task 
no. 

Operation cost per 
unit 

Operation time per 
unit 

Operator Robot Operator Robot 

Operator only  2  12    1    
6  40    4   

Robot only  9    10    1.5 
Both  1  24  10  2.5  2  

3  36  25  3  2  
4  24  15  2  1  
5  60  45  5  3.5  
7  36  25  3  2  
8  24  15  2  1  

10  12  10  1  0.5  
11  24  10  2.5  2  
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adopted to track the convergence process. 
Pareto optimal solution can be obtained when convergence, as 

shown in Fig. 12. The three objectives are adopted as the axis of Pareto 
front graph, where rank 1, rank 2 and rank 3 are labeled with different 
colors. 

Randomly selecting two solutions from rank 1 in Fig. 12. And the 
corresponding objective values and operation task assignment results 
are given in Table 4. 

According to the selected solution 1, operation task 1, operation task 
2, operation task 6, operation task 10, and operation task 11 are assigned 
to operator, and operation task 3, operation task 4, operation task 5, 
operation task 7, operation task 8, and operation task 9 are assigned to 
robot. Due to operation task 2 and operation task 6 should be done by 
operator only, three more operation tasks are assigned to operator 
without exceeding the total operation task upper limits of operator 

(Taskmax = 5). Also, the vacancy between operator and robot is zero, 
which shows good collaboration efficiency between operator and robot. 
The corresponding configuration of manufacturing system with human- 
robot collaboration is shown in Fig. 13. 

Similarly, according to the selected solution 2, operation task 2, 
operation task 5, operation task 6, and operation task 10 are assigned to 
operator, and operation task 1, operation task 3, operation task 4, 
operation task 7, operation task 8, operation task 9, operation task 11 
are assigned to robot. Due to the operation cost and time of operation 
task 5 for operator being higher than robot, it is reasonable to use 
operation task 5 to replace operation task 1 and operation task 11 to 
obtain relatively balanced workload between operator and robot 
compared with the selected solution 1. Moreover, the skill switches of 
operator are less with four operation tasks in this solution, which will 
promote operator efficiency as well. The corresponding configuration of 
manufacturing system with human-robot collaboration is shown in 
Fig. 14. 

In addition, the adopted digital twin of manufacturing system with 
human-robot collaboration can be used to simulate the effectiveness of 
the different solutions in the virtual space. And then, the dynamic 
reconfiguration decision of the manufacturing system with human-robot 
collaboration can be made based on the simulation results. Finally, the 
corresponding manufacturing system with human-robot collaboration 
in the physical space will receive the reconfiguration solution from the 
virtual space via data transmission and assign the operation tasks of new 
production task between operator and robot correctly, as shown in 
Fig. 15. 

6. Conclusion 

Digital twin-driven manufacturing system with human-robot 
collaboration is the typical paradigm of intelligent manufacturing to 
deal with production task fluctuation rapidly and efficiently, which 
reconfiguration of manufacturing system with human-robot collabora
tion based on dynamic task assignment between operator and robot 
could be executed to promote production efficiency. Also, the digital 
twin can be used to monitor production processes and improve 

Table 4 
Selected solutions.  

Solution Cost Makespan Vacancy Operation task assignment 

Operator Robot  

1  24700  1100  0 1, 2, 6, 10, 11 3, 4, 5, 7, 8, 9  
2  23400  1150  50 2, 5, 6, 10 1, 3, 4, 7, 8, 9, 11  

Fig. 13. Manufacturing system configuration of selected solution 1.  

Fig. 14. Manufacturing system configuration of selected solution 2.  

Fig. 12. Pareto optimal solution.  

Fig. 11. Convergence process.  
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reconfiguration accuracy due to seamless data transmission between 
physical space and virtual space and high-fidelity virtual model. 

How to optimize the reconfiguration process of manufacturing sys
tem with human-robot collaboration is the key problem, which the 
different characteristics between operator and robot should be con
cerned to promote production efficiency after reconfiguration. There
fore, a dynamic reconfiguration optimization method of intelligent 
manufacturing system with human-robot collaboration based on digital 
twin is proposed in this paper. Firstly, a multiple objectives optimization 
model is constructed to explore the best operation task assignment so
lution between operator and robot, including minimum production cost, 
minimum production time, and minimum idle time. The different 
characteristics between operator and robot are considered during opti
mization modeling, which human factor is adopted to reduce physio
logical fatigue of operator during reconfiguration. Secondly, the typical 
solution to the MOO problem is adopted in this paper to calculate the 
proposed optimization model. Finally, a case study is provided to 
implement the proposed dynamic reconfiguration optimization method 
of intelligent manufacturing system based on digital twin. The results 
show that the proposed method can assign the operation tasks to oper
ator and robot reasonably resulting in reasonable configuration of 
intelligent manufacturing system. However, the adopted manufacturing 
system in this paper involves one machine tool, one operator, and one 
robot only, more complex manufacturing scenarios should be studied in 
future work. Besides, other operation factors of operator and robot could 
affect the optimization effectiveness, which is a significant investigation 
direction in future work as well. 
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