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A B S T R A C T   

This study proposes a new prescriptive analytics method that aims to provide decision-makers with a systematic 
and objective approach to identify suitable locations, considering the spatial distribution of different types of 
restaurants. The method comprises of two main components: spatial co-location pattern mining and loca
tionGCN, where locationGCN is based on graph convolutional network (GCN). The spatial co-location pattern 
mining is utilized to capture the spatial correlation of specific restaurant to determine the candidate location 
selection range. The locationGCN is designed to further screen out final suitable location ranges for the specific 
restaurant type. A case study using restaurant data from Xiamen Island collected from Dianping.com is con
ducted. The empirical results demonstrate that the algorithm achieves an accuracy of 74.88%, precision of 
63.59%, and recall of 77.48%. Results indicate that the proposed approach can provide suitable location rec
ommendations for specific types of restaurants based on existing restaurant distribution information.   

1. Introduction 

Selecting the right location is crucial for the business success (Chen & 
Tsai, 2016). Statistics reveal a harsh reality, with 17 % of restaurants 
failing within their first year, and a median lifespan of just 4.5 years for 
new restaurants (Luo & Stark, 2015). Chain restaurants, like The 
Cheesecake Factory in the United States, often employ a strategy of 
closing underperforming outlets while simultaneously opening new 
ones, leading to consumer churn (Soysal et al., 2019). 

Many studies have concentrated on the descriptive analytics of 
location selection, exploring the correlation between restaurant location 
and regional characteristics at the regional unit level. However, a sig
nificant gap exists as these studies often lack concrete and practical 
methodologies to aid in making location decisions (Chen & Tsai, 2016). 

Conversely, certain research efforts have focused on prescriptive 
analytics, utilizing methodologies like rough set methods (Chen & Tsai, 
2016) and the analytic hierarchy process (Erdogan & Kaya, 2016). These 
studies transcend mere observation, offering practical solutions for 
restaurant companies to improve their decision-making processes. The 
core concept involves assigning weights to various indicators to obtain 
the evaluation scores. Nevertheless, a drawback of these methods is their 

uniform application of identical weights across diverse restaurant types. 
This limitation overlooks the intrinsic diversity and aggregation char
acteristics of various restaurant types, potentially leading to suboptimal 
location decisions. 

The aggregation characteristics of restaurants often arise from the 
merging of diverse consumer groups, analogous to the impact of spatial 
dependence and spatial heterogeneity (Kim et al., 2020). Drawing par
allels with the “coexistence” relationship among points of interest, the 
process of spatial co-location pattern mining enables the identification 
of restaurant types strongly correlated with specific categories in a given 
space (Yao et al., 2017). Stemming from economic geography, the 
geographical proximity theory posits that the spatial closeness of entities 
influences the performance of co-located actors, reflecting area char
acteristics (Nowinska, 2019). Consequently, the restaurant graph 
structure derived from co-location in different regions can provide 
valuable insights into understanding trade area characteristics and 
uncovering potential location opportunities. Nevertheless, it is note
worthy that there has been limited research specifically dedicated to 
exploring the structure of the restaurant graph. 

Progress in computer science, data mining, and machine learning 
techniques has opened avenues for extracting spatial distribution 
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information from existing restaurants (Kumar et al., 2018; Queenan 
et al., 2019). Nonetheless, effectively capturing the spatial distribution 
features of gatherings, particularly concerning restaurants, can still pose 
challenges. 

This study introduces a prescriptive analytics framework that in
corporates spatial co-location pattern mining and a graph convolutional 
network (termed as locationGCN). The aim is to effectively capture the 
spatial features of restaurants and provide support for location de
cisions. This framework contributes significantly to the field in several 
ways:  

a) Theoretical Innovation: Theoretical innovation is a cornerstone of 
this study, emphasizing the consideration of the diversity of restau
rant types in the location selection process. This recognizes the 
intricate superposition of restaurant characteristics, underscoring 
that, beyond distance relationships, other spatial relationships 
challenging to quantify through traditional methods should not be 
overlooked.  

b) Methodology Innovation: The proposed method integrates advanced 
techniques from both spatial analysis (spatial co-location pattern 
mining) and machine learning (graph convolutional network). This 
comprehensive and data-driven approach captures and models the 
spatial features of restaurants. Spatial co-location pattern mining 
identifies the candidate location range, while the designed loca
tionGCN delves into intricate spatial information beyond Euclidean 
data. This strategic use of locationGCN complements and addresses 
the limitations of spatial co-location. 

c) Application Innovation: Focused on prescriptive analytics for loca
tion selection, our study introduces a novel data mining framework 
designed to provide decision support for restaurant location de
cisions. This framework extends the application of the combination 
of co-location and GCN to address challenges in the domain of 
location selection. 

The paper is organized as follows: Section 2 reviews the relevant 
literature. Section 3 outlines the spatial data mining method proposed 
for location selection. In Section 4, empirical studies demonstrate the 
effectiveness of the proposed approach, with results compared to other 
methodologies. Finally, Section 5 concludes the paper and discusses 
future research directions. 

2. Literature review 

This work focuses on prescriptive analytics for location selection, 
offering a recommendation based on a spatial data mining method that 
incorporates co-location and GCN. In this section, we delve into each, 
emphasizing the aspects most pertinent to the problem under study. 

2.1. Prescriptive analytics 

Unlike descriptive and predictive analytics, prescriptive analytics is 
geared towards identifying the optimal course of action for the future. Its 
aim is to provide adaptive, automated, constrained, time-dependent, 
and optimal decisions (Charles Vincent et al., 2022). From a human 
intervention standpoint, prescriptive analytics can be divided into two 
types: decision-making and decision automation (Lepenioti et al., 2020). 
Decision-making involves offering recommendations, while decision 
automation entails the execution of the prescribed action. 

Despite being considered relatively immature compared to descrip
tive and predictive analytics, prescriptive analytics has seen increased 
application in various fields in recent years. Examples include urban 
facility planning (Brandt et al., 2021), stochastic dynamic vehicle 
routing problems (Soeffker et al., 2022), and so on. These instances 
represent recent advancements in the field of business analytics. 

Indeed, there is a growing trend towards employing machine 
learning and data mining for prescriptive analytics (Hauser et al., 2021; 

Notz & Pibernik, 2022). Lepenioti et al. (2020) have emphasized that 
prescriptive analytics models have the potential to provide more 
objective advice than traditional analysis. Therefore, in the context of 
location selection research, the integration of prescriptive analytics is 
seen to effectively mitigate the impact of subjectivity. 

2.2. Location selection theory and approach 

The location selection problem has been thoroughly examined in 
various literatures. Classic location theories, such as the central place 
theory (Bustin, 2020) and spatial interaction theory (Wieland, 1932), 
assert that the distance between the store and the customer is a crucial 
factor in location selection. Recent research reinforces the ongoing sig
nificance of geographic proximity in supply chain location selection 
(Bray et al., 2019). Additionally, Aksoy and Yetkin Ozbuk (2017) 
highlight accessibility and convenience as influential factors in hotel 
location selection. 

As transportation advances, the significance of physical distance 
diminishes, but geographic convenience remains crucial. Studies have 
shifted focus to various trade area characteristics, including consumer 
factors (Dan & Marcotte, 2019), demographics (Cao et al., 2020), market 
conditions (Yang et al., 2017), and demand interactions (Huang et al., 
2019). Yang and Mao (2020) argue that store distribution in a trade area 
results from both competition and agglomeration effects. Kim et al. 
(2021) used a spatial econometric model to identify spatial spillover 
effects of agglomeration economies. However, capturing the complex 
interaction solely through mathematical models remains challenging. 
This paper addresses this challenge by constructing a restaurant graph to 
capture spatial interaction information, focusing on mining spatial 
location relevance to discern regional characteristics. 

Yang et al. (2017) showcased a strong correlation between the 
number of different restaurant types in each region and demographic 
characteristics. Their findings imply that the appropriateness of a loca
tion depends on the specific types of restaurants it hosts. Therefore, we 
emphasize the importance of considering the diversity of restaurant 
types in the process of location selection. 

So far, a limited number of studies have delved into restaurant 
location issues (Chen & Tsai, 2016), while multi-criteria decision-mak
ing (MCDM) approaches are generally adopted in it (Liu et al., 2020). 
However, these methods often involve complex artificial evaluations 
and are inherently subjective. Therefore, this paper aims to introduce a 
novel prescriptive analytics method to enhance the efficiency and ob
jectivity of restaurant location selection. 

2.3. Spatial data mining 

Recently, there has been a notable interest in spatial data mining 
methods, with the analysis of spatial associations being a crucial 
component (Bai et al., 2016). Particularly, spatial co-location has been 
successfully applied in studying location selection for hotels and other 
facilities (Yan et al., 2018). However, no scholars have applied co- 
location pattern mining to restaurant location research. 

Spatial co-location models effectively capture the aggregation of 
spatial features, yet they often fall short in considering specific spatial 
relationships among points of interest and may not thoroughly explore 
these relationships (Wang et al., 2022; Yao et al., 2018). Some re
searchers have employed spatial co-location models for points of interest 
recommendations (Chen et al., 2022). However, they primarily mined 
relevant mobility patterns, and the effectiveness of these models is 
frequently hindered by data sparsity issues (R. J. Hu et al., 2022). There 
is also a significant portion of scholars who is dedicated to improving the 
efficiency of co-location algorithms (Z. Hu et al., 2022; Wang et al., 
2024; Wu et al., 2022). However, no research exploring the integration 
of emerging graph deep learning techniques with co-location studies. 

In recent years, various advanced models for location selection have 
been proposed (Jiao et al., 2020), incorporating metaheuristic 

S. Han et al.                                                                                                                                                                                                                                     



Journal of Business Research 179 (2024) 114691

3

algorithms (Dan & Marcotte, 2019), data mining (Chen & Tsai, 2016), 
and machine learning (Han et al., 2022). Among these, the graph con
volutional network (GCN) stands out, which is a simplified graph con
volutional neural network proposed by Kipf and Welling (2016). 

The application of GCN has garnered increasing attention in recent 
research (Lee & Rhee, 2022). The widespread use of GCN is attributed to 
its ability to integrate node feature information and local structure in
formation, facilitating the processing and learning of non-Euclidean 
data (Kipf & Welling, 2016). This capacity addresses the limitation of 
co-location methods, which often fall short in mining spatial interaction 
relationships between points. Non-Euclidean data, characterized by 
irregular spatial structures like social networks and points of interest 
networks, is well-suited for representation using a graph structure (Kipf 
& Welling, 2016). Consequently, our approach aims to combine spatial 
co-location pattern mining with GCN, creating an innovative spatial 
data mining framework tailored for restaurant location decisions. 

3. Proposed method 

In the following, we describe how we deal with the restaurant 
location selection problem as sequential decision processes. The pro
cesses are shown in Fig. 1. 

Like other prescriptive analytics processes, the information model is 
constructed at first to predict which kind restaurant is encouraged to 
locate together with, where we introduce the co-location pattern mining 
to predict the candidate range of location selection. Then we propose the 
decision-making method based on locationGCN to further reduce the 
scope of location selection and determine the final location selection. To 
make the process clearer, we introduce the key parts of processes in this 
section. 

3.1. Divide the dataset into training set and testing set 

Referring to Bao and Wang (2018), to not disrupt the spatial conti
nuity of the data, we divide the area into square grids of the same size 
and divide the dataset according to the number of grids. The partitioning 
process is shown in Appendix A algorithm 1. 

3.2. Construct the restaurant graphs with labels 

Using the obtained training set and testing set, separate restaurant 
graphs are constructed. Given that, in the real world, improper site se
lection often results in low restaurant revenue and eventual closure 
(Chen & Tsai, 2016), we can assume that the location selection of 
existing restaurants is generally appropriate to some extent. Therefore, a 
graph containing a specified type of restaurant is labeled 1, indicating 
the location is suitable for that type of restaurant. Conversely, if a 
specified type of restaurant is not present in the graph, it is labeled with 
0, signifying that it is unsuitable for location selection. 

Assuming that the specified type of restaurant is O, its corresponding 
restaurants in the space are set as Oλ (λ ∈ [1, Λ]), where Λ is the total 
number of the restaurant of type O. Then, with Oλ as the center of the 
circle, and the distance threshold d̂ as the radius, search the restaurant 
nodes that maintain the neighbor relationship with the restaurant Oλ to 
form a graph Gλ, which is labeled 1. 

In addition, for the rest restaurants that do not keep the neighbor 
relationship with the specified type of restaurants, we use hierarchical 
clustering to merge them into cliques. To ensure that any two nodes in 
the same cliques keep neighbor relationship with each other, the hier
archical clustering based on longest distance method is adopted. It 
means that the distance between two cliques is measured by the distance 
between the farthest points within these two cliques. The clustering 
process as follows: merge the closest samples into one clique, and then 
merge the two closest cliques each time, where the merging operation is 
only taken when the distance between two cliques is shorter than dis
tance threshold d̂. Consequently, when the distance between any two 
cliques beyond distance threshold ̂d, the merging process stops, and final 
cliques are obtained, which are regarded as graphs labeled 0. 

Fig. 2 shows the examples that contains five constructed graphs. 
Graph G1, graph G2, and graph G5 are labeled 1, and graph G3 and graph 
G4 are labeled 0. 

As shown in Fig. 2, the distance between graph G3 and graph G4 is 
determined by the distance between restaurant A3 and restaurant B4, 
because it is the farthest distance between nodes in graph G3 and graph 
G4. Besides Fig. 2 also shows the situation that there is more than one 

Fig. 1. The framework of proposed method.  
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restaurant of the specified type in the constructed graph. Taking graph 
G2 and graph G5 as examples, both restaurant O5 and restaurant O2 are 
the specified type of restaurant. While in graph G5, restaurant O5 is 
taken as the central restaurant and restaurant O2 is remained as the 
neighbor restaurant which has the same type as the central restaurant. 
But in graph G2, it is reverse. It should be noted to distinguish the central 
restaurant and its neighbor restaurants though their types maybe the 
same. 

3.3. Spatial co-location pattern mining 

After obtaining the restaurant graphs, using the spatial co-location 
pattern mining based on maximal clique (Zhang et al., 2022) to find 
the prevalent co-location pattern of the restaurant with specified type. 
Because the focusing is to find out the types that the restaurants of 
specified type tend to locate around, the spatial co-location pattern 
mining process is only carried out based on the restaurant graph with 
label l in training set. 

3.3.1. Basic concepts 
Center restaurant: It identifies the restaurant object with specified 

type that we regard as the center of the restaurant graph. 
Spatial feature of the restaurant in neighbor range: It is the type of 

neighbor restaurant, like the feature set of the graph G1 in Fig. 2 is 
{A,B,C,D}. 

Co-location pattern of specified type of restaurant: It is the set of a 
series of spatial features within the neighbor range of specified type of 
restaurant, besides, any two restaurants in co-location pattern keep 
neighbor relationships with each other. For example, one of co-location 
pattern of specified type restaurant in graph G1 in Fig. 2 is {A,B,C}. 

Spatial instance: It is the corresponding objects of spatial feature in 
locations, like the spatial instance of A in graph G1 in Fig. 2 is A1 and A1′. 

Spatial co-location instance: It is a set of objects where every object 
in the co-location pattern keeps the neighbor relationship with each 
other, like one of the instances of the co-location pattern {A,B,C} in 
Fig. 2 graph G1 is {A1,B1,C1}. 

Prevalent co-location pattern of specified type of restaurant: When 

the occurrence frequency of spatial co-location pattern reaches a 
threshold, the spatial co-location pattern is considered prevalent. 

It’s essential to note that to distinguish whether there are another 
specified restaurant instances in neighbor range of the specified 
restaurant, the above sets do not contain the information of center res
taurants instance. For example, if the instance of specified type O is a 
Chinese restaurant, and the prevalent co-location pattern is {Chinese 
restaurant, Japanese cuisine, snacks}, it means that Chinese restaurant 
tends to locate with other Chinese restaurant, Japanese cuisine restau
rants, and snacks shop in the neighbor area. Therefore, a location that 
contains other Chinese restaurant, Japanese cuisine restaurants, and 
snacks is advise to as candidate addresses for Chinese restaurants. 

In particular, the “Chinese restaurant” in prevalent co-location in
dicates that there is at least one another neighbor restaurant whose type 
is Chinese restaurant, and the neighbor Chinese restaurant tends to have 
a positive spillover effect on the central Chinese restaurant. Conversely, 
if the prevalent co-location pattern is {Japanese cuisine, snacks}, it 
represents that there is no other instance of specified type restaurant in 
the neighbor range, which may mean that if this type of restaurant 
gathers, it will mostly generate a fierce competitive effect. Thus, this 
type of restaurant tends to select location dispersedly. 

3.3.2. Prevalent co-location pattern mining process 
The process of prevalent spatial co-location pattern mining method 

with join-base is a time-consuming process (Yao et al., 2016). Therefore, 
the prevalent spatial co-location pattern mining method based on 
maximal clique (Zhang et al., 2022) is adopted in this paper. The process 
of the detail mining contains three main steps. 

a) Finding the spatial co-location instances to obtain the corre
sponding spatial co-location pattern. 

We only pay attention to the co-location pattern which contains the 
specified type of restaurant. Therefore, we focus on the restaurant dis
tribution graph Gλ labeled 1, finding out the spatial co-location instances 
to determine the existing co-location patterns of specified type of 
restaurant. Based on the idea of Bron-Kerbosch algorithm (Zhang et al., 
2022), the spatial co-location instances are found out by determining the 
maximal clique set of the specified type of restaurant. The process of 

Fig. 2. Example for explanation of constructing graphs.  
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mining the maximal clique set is shown in Appendix A algorithm 2, 
where the central restaurant instance is not shown in the maximal 
cliques. 

Taking the Graph G1 in Fig. 2 as an example, according to the Al
gorithm 1, the maximal cliques of specified type of restaurant in G1 

include {A1,B1,C1}, {C1,D1}, and 
{
D1,A′

1
}
. Therefore, the corre

sponding co-location patterns of specified type of restaurant is {A,B,C}, 
{C,D}, and {D,A}. 

b) Calculating the participation rate and participation degree of each 
co-location pattern. 

The spatial co-location pattern mining algorithm is used to capture 
the prevalent co-location pattern in training set, thus the counting of 
instances in this section is only in training set. We define the instance 
number that each feature participates to the co-location pattern in
stances as symbol a, and the total spatial instance number of each 
feature as symbol b, then the participation rate of each feature in co- 
location pattern is the ratio of a to b. It’s important to note that b con
tains the spatial instance of feature point in the graph labeled 0. While 
the participation degree of spatial co-location pattern is the minimum 
value of the participation rate. Taking the co-location pattern {A,B,C}
in Fig. 2 as an example, its participation degree is 34. 

c) Determining the prevalent co-location pattern. 
Initially, a hyper-parameter named participation threshold is deter

mined. When participation degrees of spatial co-locations surpass the 
participation threshold, we categorize the spatial co-location pattern as 
a prevalent co-location pattern. 

The process of determining the prevalent co-location patterns is 
shown in Appendix A algorithm 3. When the current spatial co-location 
pattern is not prevalent, it needs to continue to judge whether its subsets 
are prevalent. The judging process only stops when the subset only 
contains one feature, or it is a prevalent co-location pattern. 

The obtained prevalent co-location pattern represents a stable mar
ket state, reflecting the experiential information of location selection 
(Bao & Wang, 2018). It unveils the distribution characteristics of res
taurants, indicating which types of restaurants tend to cluster together. 
Unlike previous literature (Yan et al., 2018), we retain all prevalent co- 
location patterns rather than only focusing on those with a large number 
of feature types. However, relying solely on prevalent co-location pat
terns is inadequate for determining the appropriate location for a 
specified type of restaurant, as it overlooks other restaurant features. 
Therefore, prevalent co-location patterns are only used to establish the 
candidate location selection range, and locationGCN is introduced to 
further explore spatial information to determine the final locations. 

3.4. LocationGCN model construction 

The distribution of restaurants in space often seems irregular, and 
under the interaction of spillover effects and competitive relations, 
different types of restaurants may adopt different location strategies. 
locationGCN can analysis the spatial relationships of different types of 
restaurants to further reduce the scope of location selection. In this 
section, we firstly introduce the definition of graph information, which 
is as the input of locationGCN, then the specific mining process is 
described, and the final location selection is decided. 

3.4.1. Definition of graph information 
Define the graph as G = (V, E,X), where V denotes the set of ver

texes, and V = {vi|i = 1, 2, ..., n} ∈ Rn, n is the total number of nodes in 
each graph, E represents the set of edges, and X is the normalized feature 
matrix of node, X = [x1, x2, ..., xn]

T
∈ Rn×c, where each feature is a c 

dimension feature vector, xi ∈ Rc. 
To mitigate the impact of information from the central restaurant in 

the graph labeled 1 on the classification results, the feature vector of the 
central restaurant node is intentionally left empty. Consequently, the 
central node lacks feature information but serves as a conduit for other 

nodes to exchange information. 
Based on Tobler’s first law of geography that the closer the distance 

is, the stronger the spatial objects are related (Joo et al., 2017), we use 
the distance relationship between restaurants to describe the relation
ship between restaurants. Therefore, the adjacent matrix is shown as 
formula (1): 

Aij =

⎧
⎪⎨

⎪⎩

1
dij
, (vi, vj) ∈ E

0, (vi, vj) ∕∈ E
(1) 

Where Aij is the adjacency relationship between node vi and vj, which 
forms the adjacency matrix A, A ∈ Rn×n. Symbol dij denotes the distance 
between restaurant nodes. Only when there is a connection between 
node vi and vj, there is an adjacency correlation between them. 

Then the input graph information of locationGCN is obtained, 
including feature matrix and adjacent matrix. 

3.4.2. locationGCN network structure 
locationGCN takes restaurant graph set as the input, and outputs the 

corresponding labels. The network structure of locationGCN is shown as 
Fig. 3. There are three important modules: convolution layer, global 
pooling layer, and softmax function. 

a) Convolutional layer. 
This paper constructs the convolution model based on the model 

proposed by Kipf and Welling (2016), which is shown as formula (2): 

HV
(l+1) = σ

(

D̃
1
2ÃD̃

1
2HV

(l)W(l)
)

(2) 

Formula (2) is the propagation rule for GCN, symbol HV
(l) is the 

output of all nodes in the layer l, HV
(0) = X, Ã = A+I , D̃ii =

∑
jÃij, and 

symbol W(l) is the parameter matrix to be trained for the layer l, and σ is 
the activation function. 

The convolutional layer is employed to aggregate spatial information 
for each point. The output from the previous layer serves as the input for 
the current layer. After each convolutional layer, the information for the 
points is updated. 

b) Global pooling layer. 
As this paper involves multiple graph classification, the global 

pooling layer is utilized to consolidate the outcomes of all nodes on a 
single graph to derive the graph’s classification information. Following 
the approach outlined in the literature (Li et al., 2015), the pooling 
mechanism is defined by formula (3). 

Ỹλ= tanh(
∑

v∈V
σ
(
f1
(
H(l+1)

v , xv
))

⊙ tanh
(
f2
(
H(l+1)

v , xv
))
)λ = 1, 2, 3, ..., TG (3)  

where symbol Ỹλ is the outputs of global pooling layer of graph Gλ, TG is 
the total number of graphs, f1(⋅) and f2(⋅) are the full connected func
tions, and its inputs are convoluted feature and the normalized feature of 
each node in Gλ. σ(⋅) is a soft attention mechanism, which can make the 
networks pay more attention to the more important points. tanh(⋅) is an 
activation functions, and ⊙ is an operational symbol, which can multiply 
elements of two matrices based on their corresponding position. 

c) Softmax function 
As it is a binary classification problem, the softmax function is 

applied to map the output results of the pooling layer into the range of 
0–1, as depicted in formula (4). 

Ŷ λ = softmax(Ỹλ) =

exp
(

Ỹλ

)

∑
λexp

(

Ỹλ

) λ = 1, 2, 3, ...,TG (4)  

where symbol Ŷλ is the predictive value, which refers to the probability 
that graph Gλ corresponds to label 1, then its probability of label 0 is 
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1 - Ŷλ. 
The entire network utilizes a backpropagation algorithm for weight 

updates, and we employ the adaptive moment estimation (Kingma & Ba, 
2014) as the optimizer. Given that this study is a classification problem, 
we compute the loss function using cross-entropy, as illustrated in for
mula (5). 

L = -
∑

λ
YλlnŶ λλ = 1, 2, 3, ...,TG (5)  

where symbol Yλ is the actual value of Gλ. 
Finally, the predict label value uλ is determined by the formula (6): 

uλ =

{
0, Ŷ λ < 0.5
1, Ŷ λ⩾0.5

(6)  

3.4.3. Determine final location selection scope 
Using locationGCN, we conduct a secondary screening on instances 

in the testing set that meet the criteria of the prevalent co-location 
pattern. Subsequently, we identify the restaurant instances that are 
most suitable for the specified restaurant to gather. Managers can make 
informed decisions on the optimal location for the specified restaurant 
by referring to these identified restaurant instances. The final location 
selection scope, depicted in the shaded area, is illustrated in Fig. 4. 

As depicted in Fig. 4, three restaurants (A, B and C) are notably 
associated with the specified type of restaurant. By taking the distance 
threshold d̂ as the radius, the optimal scope for the location selection of 
specified restaurant is determined by the overlap of the three regions, 
indicated by the shaded area. 

3.5. Evaluation method 

The predicted results can be classified into four categories: 
True positive (TP): The actual value is positive (Y = 1), and the 

predicted value is positive (Ŷ = 1). 
False positive (FP): The actual value is negative (Y = 0), and the 

predicted value is positive (Ŷ = 1). 
True negative (Soysal et al.): The actual value is negative (Y = 0), 

and the predicted value is negative (Ŷ = 0). 

False negative (FN): The actual value is positive (Y = 1), and the 
predicted value is negative (Ŷ = 0). 

For classification problems, this paper employs four main evaluation 
indicators: accuracy, precision, recall, and AUC. Formulas (7), (8), and 
(9) depict the calculation of accuracy, precision, and recall. Meanwhile, 
AUC represents the area under the ROC curve, with the ROC curve’s 
abscissa denoted as FPR (as shown in formula (10)), and the ordinate 
equivalent to recall. AUC values exceeding 75 % indicate a well- 
performing predictive model. 

Fig. 3. The network structure of locationGCN.  

Fig. 4. The illustration of final scope of location selection.  
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accuracy =
TP + FN

TP + FP + TN + FN
(7)  

precision =
TP

TP + FP
(8)  

recall =
TP

TP + FN
(9)  

FPR =
FP

FP + TN
(10) 

A total of 10 experiments are conducted, and the average of all 
evaluation values is calculated to represent the algorithm’s performance 
under various parameter settings. 

4. Case study 

4.1. Data acquisition 

We utilized restaurant data from the “Food” section of the website 
“https://www.dianping.com” in December 2019 as a sample for our 
study. Dianping.com is the leading platform for consumer reviews of 
daily consumption experiences in China, comparable to Google Review. 
The extracted fields include restaurant name, code, type, administrative 
district, specific address, average price, taste, environment, and service 
rating. 

We created a feature vector for each restaurant node, incorporating 
the average price, taste rating, environment rating, service rating, and 
restaurant type. To validate the accuracy of the restaurant data, we 
cross-referenced it with information obtained from Baidu Map (htt 
ps://map.baidu.com). After acquiring basic details, we utilized the 
Baidu Map open platform (https://lbsyun.baidu.com) to retrieve the 
longitude and latitude of each restaurant based on its address. 

4.2. Data pre-processing 

We classified the crawled restaurant data into two tiers, H1 and H2 
(refer to Appendix B), based on the official restaurant industry classifi
cation standard from the State Food and Drug Administration (SFDA) 
and the National Bureau of Statistics (NBS) “Statistical Classification of 
Living Services (2019).” This classification was complemented by 
Dianping.com’s own categorization method, aligning with the respective 
criteria. 

The initial parameters for the algorithm are defined as follows: for 
co-location pattern mining, the distance threshold (d̂) is set to 100 m, 
the participation threshold is 0.3, and the training set proportion is 2/3. 
In LocationGCN, the validation set proportion is 1/2, the number of it
erations is 200, and the initial learning rate is 0.01. 

4.3. Location selection experiment 

4.3.1. Data description 
We gathered a total of 13,539 pieces of restaurant data from 

Dianping.com for Xiamen Island, utilizing the latitude and longitude in
formation of the crawled restaurants. Some nodes overlapped on the 
map due to proximity or being on different floors of the same location, 
rendering them not visible. 

4.3.2. Example of calculation analysis 
We use the grid method to process data, dividing the map of Xiamen 

Island into 71 grids. Each grid is approximately 1510 m wide. The grids 
can cover the entire range of the Xiamen Island map, and the redundant 
area is relatively small. Then, 47 grids are used as training areas and 24 
grids as the test areas. 

We chose “Dinner-Western food” and “Fast food-Western food” as 
examples, with second tier category “Western food”. The results of the 

algorithm can be observed for restaurants with the same taste at 
different price levels. 

The results indicators for the two experiments are presented in 
Table 1. The ultimate prevalent co-location patterns for restaurants of 
the type “Dinner-Western food” include: {Dinner-Japanese food, Casual 
dining-Cafes, Dinner-Seafood}, while for restaurants of the type “Fast 
food-Western food” include: {Fast food-Seafood, Casual dining-Drinks}, 
{Dinner-Seafood, Dinner-Hotpot, Casual dining-Cafes}, {Dinner-BBQ, 
Casual dining-Drinks, Fast food-Western food}. Fig. 5 illustrates the al
gorithm’s results for these two types of restaurants. 

Table 1 reveals that the algorithm yields different results for speci
fied types of restaurants under different categories. Restaurants cate
gorized as “Dinner-Western food” tend to be more upscale, offering 
higher-quality products and dining environments. Among the strongly 
associated restaurants in this category, aside from cafes, there are 
mainly higher-priced formal dining options, indicating a higher 
spending capacity among these consumers. In contrast, “Fast food – 
Western food” covers a larger area on the island and has more prevalent 
co-location patterns, suggesting a broader association with various 
restaurant types. In terms of accuracy, the algorithm for “Dinner-West
ern food” is less precise because there are more false positives (areas 
with yellow dots but not covered by blue dots in Fig. 5 (a)). However, 
this also implies the presence of potential consumers in these areas and 
the possibility of emerging new restaurants of this type. 

Compared to the high-end “Dinner-Western food,” “Fast food – 
Western food” is more accessible and has a wider distribution. It exhibits 
more prevalent co-location patterns, showing strong associations not 
only with other fast food and casual dining establishments but also with 
some restaurants in the formal dining category. The presence of multiple 
prevalent co-location patterns indicates that the distribution of “Fast 
food – Western food” restaurants is influenced by three main types of 
patterns, as reflected in the results. It is conceivable that these three 
distribution patterns represent three types of shopping areas suitable for 
locating “Fast food-Western food” restaurants, each with the potential to 
attract different preferences. 

Taking one of the patterns of the “Fast food-Western food” type, 
{Dinner-Seafood, Dinner-Hotpot, Casual dining-Cafes}, as an example, it 
represents the characteristic of a large commercial plaza, while {Fast 
food-Seafood, Casual dining-Drinks} is more akin to the setup of an 
affordable food court. In terms of the numerical results, Fig. 5 (b) shows 
that some shop locations are still not identified, indicating more false- 
negative cases (areas with only blue dots but not covered by yellow 
dots in Fig. 5 (b)). This results in a low recall in the findings, suggesting 
that there might be a different clustering pattern with other types of 
restaurants in the test area compared to the training area for “Fast food 
− Western food”. 

4.3.3. Sensitivity analysis 
To assess the impact of each parameter on the algorithm results and 

identify suitable parameters, experiments are conducted for all cate
gories in sequence. The average values of the evaluation indicators ob
tained in each experiment are then used to gauge the algorithm’s 
performance.  

a) Number of neural network layers. The results (Table 2) indicate a 
noticeable drop in the accuracy of the algorithm when increasing the 
number of convolutional layers. This decline could be attributed to 
the expanded consideration of neighboring nodes by LocationGCN, 
extending from the first level to multiple levels when increasing the 

Table 1 
Calculation results of the algorithm in %.  

Specify type Accuracy Precision Recall AUC 

Dinner – Western food  75.66  30.61  83.33  78.98 
Fast food – Western food  80.28  69.49  73.21  78.71  
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number of convolutional layers. Excessive convolutional layers may 
lead to over-smoothing, causing the distinctions between nodes to 
blur and diminishing the algorithm’s effectiveness. Consequently, 
the algorithm employs only one convolutional layer.  

b) b.Distance threshold. As depicted in Fig. 6, in this experiment, the 
optimal distance threshold is found to be between 50 m and 100 m, 
indicating that restaurants within this proximity around the specified 
type of restaurant have the most significant impact. This contrasts 
notably with the findings of Bao and Wang (2018), who identified 

Fig. 5. Results of the algorithm. (a) “Dinner − Western food” type. (b)“Fast food − Western food” type.  
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the optimal distance threshold as 2 km. The difference arises due to 
the relatively close clustering of restaurants in this study compared 
to the location of POIs in the literature, necessitating a smaller 
optimal distance threshold for the algorithm.  

c) Participation threshold. As shown in Fig. 7, when the participation 
threshold is too small, all indicator values are low. This is due to a 
large number of less-associated restaurant patterns being considered 
as prevalent co-location patterns in LocationGCN. On the other hand, 
when the participation threshold is too large, fewer patterns are 
retained, leading to the omission of many viable regions, causing a 
decrease in accuracy, recall, and AUC. Consequently, the participa
tion threshold is set at 0.3. 

4.3.4. Algorithm comparison results 
To affirm the superiority of the co-location + LocationGCN algorithm 

in this study, comparative experiments were conducted. The results, 
based on the data introduced in section 4.3.1, are presented in Table 3. 

The experimental data show that the co-location + LocationGCN 
algorithm employed in this study outperforms other machine learning 
algorithms. This superiority can be attributed to several factors. Firstly, 
the traditional co-location algorithm, which filters the number of 

categories included in the pattern to obtain the final prevalent co- 
location pattern, tends to discriminate some feasible regions as infea
sible, resulting in its lowest recall. Additionally, the traditional co- 
location algorithm can only capture spatial information from 
Euclidean data, neglecting the complex superposition of restaurant 
characteristics, leading to high false positives (FP) and low precision. 
Secondly, using LocationGCN alone lacks a filtering indicator for 
restaurant types initially, resulting in bias generated by data imbalance. 
Lastly, the CNN algorithm cannot effectively consider the spatial dis
tribution of restaurants; it only takes the type of restaurants and other 
information as input data, leading to lower performance across all in
dicators compared to the algorithm used in this study. Consequently, the 
co-location and LocationGCN-based algorithm proves more suitable for 
location selection decision-making. 

4.4. Prescriptive analytics of restaurant locations and consumer 
preferences 

To investigate how diverse flavors and price ranges influence the 
spatial arrangement of restaurants in distinct regions, we conducted an 

Table 2 
Performance of the algorithm with different number of convolution layers (Unit: 
%).  

Number of convolution layers Accuracy Precision Recall AUC 

1  74.88  63.59  77.48  75.40 
2  61.70  50.00  27.78  55.27 
3  59.96  42.99  26.14  52.93  

Fig. 6. Effect of distance thresholds on algorithm performance.  

Fig. 7. Effect of participation threshold on algorithm performance.  

Table 3 
Comparison of the performance of the various algorithms (Unit: %).  

Algorithms Accuracy Precision Recall AUC 

co-location + LocationGCN 
(Algorithm for this study)  

74.88  63.59  77.48  75.39 

co-location  63.93  55.17  21.19  55.42 
LocationGCN (Kipf & Welling, 2016)  69.40  64.89  40.40  63.62 
co-location + CNN  32.34  24.69  39.07  40.06  

S. Han et al.                                                                                                                                                                                                                                     
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additional experiment focusing on the administrative districts of Xiamen 
City. Subsequently, we performed a prescriptive analysis of restaurant 
location decisions, formulating corresponding marketing strategies 
based on the experimental findings. The specified restaurant types in 
this experiment are “Dinner − Western” and “Fast Food − Western”, 
with the algorithm parameters configured as outlined in the previous 
section. 

Table 4 displays the prevalent patterns for specified restaurants in 
different regions. The prevalent co-location patterns exhibit minimal 
overlap in each district, indicating that consumer preferences for spe
cific types of restaurants differ across various areas. 

By amalgamating the prevailing co-location patterns based on re
gions, it emerges that the high-end “Dinner-Western food” restaurants 
tend to cluster with other formal dining establishments. In contrast, the 
“Fast food – Western food” restaurants show a propensity to associate 
with other fast-food eateries. Notably, “Fast-food-Western food” exhibits 
a pronounced correlation with “Fast food-Noodle restaurant,” possibly 
indicative of shared attributes such as quick meal turnover. Conse
quently, for those contemplating the opening of a “Fast-food-Western 
food” restaurant, it is advisable to consider locations near establish
ments with a high turnover rate. 

Furthermore, the identified prevalent patterns offer insights into 
whether restaurants of the same type in a specific area tend to cluster 
together. For instance, in Siming District, the pattern {Dinner-BBQ, 
Casual dining-Drinks, Fast food-Western food} suggests that “Fast food – 
Western” establishments in this area exhibit a preference for co-locating 
with similar types, indicating potential benefits from spillover effects 
within the same category. Consequently, for a new “Fast food – Western” 
restaurant in Siming District, it is advisable to consider locating in 
proximity to other establishments of the same type. 

To conduct a more in-depth market analysis and provide strategic 
marketing insights, a kernel density heat map is presented in Fig. 8. 
Notably, high-rated and high-consumption restaurants are primarily 
situated in Huli and Siming districts (Fig. 8 (d)), while low-rated and 
high-consumption restaurants are exclusively found in Huli district 
(Fig. 8 (b)). This suggests that high-consumption restaurants in Siming 
district tend to exhibit higher customer satisfaction. This correlation 
could be attributed to the abundance of tourist attractions in Siming 

District, coupled with generally higher spending levels among Siming 
district residents. Consequently, the likelihood of negative sentiments 
arising from high prices leading to low scores is diminished. 

Furthermore, the analysis of Fig. 8 (b) and (d) reveals a scarcity of 
high-consumption restaurants in Tongan District. This observation 
aligns with the absence of prevalent co-location patterns for “Formal 
Dining – Western food” in Tongan District (Table 4). Consequently, if 
you are considering opening a high-consumption restaurant, Tongan 
may not be a favorable choice. 

The aforementioned inference aligns with the classic 4P theory. The 
existing restaurant distribution graph structure serves as a valuable in
dicator of the demographic characteristics in the respective area. For 
instance, if the restaurant distribution graph indicates a clustering of 
establishments with high ratings and high consumption levels, it implies 
a preference among residents for high-consumption restaurants. This 
insight can offer valuable references for product positioning and con
sumer targeting in marketing strategies. 

5. Conclusion and discussion 

In this study, we introduced a novel prescriptive analytics method for 
location selection recommendations by integrating spatial co-location 
pattern mining and LocationGCN. We collected and analyzed a dataset 
comprising 13,549 pieces of data to validate the effectiveness of our 
proposed framework. The experimental results demonstrate that our 
approach surpasses existing methods in performance. 

5.1. Implications for research 

Firstly, the framework proposed in this study provides insights into 
the diversity of restaurant types, offering implications not only for the 
restaurant industry but also for other service sectors. In contrast to 
traditional studies that mainly examine the correlation between 
restaurant location and regional characteristics (Yang et al., 2017), this 
research delves deeper, investigating the non-linear and intricate con
nections among features and their superpositions within clustered 
restaurants. 

Secondly, this study offers novel prescriptive analytics framework for 
restaurant location selection. It utilizes spatial co-location pattern 
mining to determine the candidate location selection range instead of 
MCDM, which eliminates the reliance on extensive operational data that 
may be difficult to obtain. Furthermore, the LocationGCN is used to 
determine the final location selection results by learning the spatial 
distribution characteristics between different restaurant nodes, which 
compensates for the deficiency of simple co-location not being able to 
capture spatial specific relationships (Yan et al., 2018). 

Lastly, this study introduces a fresh perspective on industrial clusters 
and supply balance when assessing consumer demand. In contrast to 
traditional methods like spatial econometrics modeling (Yu, 2019), 
which often depend on extensive economic indicators and data, our 
proposed framework leverages graph-structured data and freely avail
able social media information for spatial analysis. Examining successful 
restaurants in a specific region sheds light on the genuine needs of that 
area from a supply perspective. This approach opens up new avenues for 
research into the location dynamics of other consumer-oriented service 
industries, such as hotels and tourism attractions. 

5.2. Managerial implications 

Firstly, in contrast to traditional location methods that demand 
extensive investigations across various trade areas (Cheng, 2018), this 
study employs an intelligent algorithm to discern the spatial distribution 
information of restaurants. By considering both the spillover effects and 
competition dynamics among restaurants, it provides a rational location 
range for the specified restaurant. This approach streamlines the cost of 
location selection in the early stages of decision-making, thereby 

Table 4 
The prevalent pattern for specified restaurants in different regions.  

Type 
Region 

Formal Dining – Western food Fast food – Western food 

Xiamen as a 
whole 

{Dinner-Seafood, Casual 
dining-Drinks} 

{Fast food-Noodle restaurant, 
Casual dining-Drinks}, {Fast 
food-Western food, Casual 
dining-Drinks} 

Siming 
District 

{Dinner-Seafood, Dinner-BBQ, 
Dinner-Japanese food, Dinner- 
Fujian food}, {Fast food- 
Western food, Casual dining- 
Drinks} 

{Dinner-Seafood, Dinner-Hotpot, 
Casual dining-Cafes}, {Dinner- 
BBQ, Casual dining-Drinks, Fast 
food-Western food}, {Snacks- 
Fried food, Casual dining-Drinks, 
Fast food-BBQ } 

Huli 
District 

{Dinner-Japanese food, Casual 
dining-Cafes, Dinner-Seafood} 

{Fast food-Noodle restaurant, 
Casual dining-Drinks}, {Dinner- 
BBQ, Casual dining-Drinks, Fast 
food-Western food} 

Tongan 
District 

{ } {Snacks-Other}, {Fast food- 
Western food} 

Haicang 
District 

{Dinner- BBQ} {Fast food-Fujian food} 

Jimei 
District 

{Casual dining-Drinks, Snacks- 
Other}, {Fast food-Other} 

{Fast food-Noodle restaurant, 
Casual dining-Drinks, Dessert- 
Bread dessert, {Fast food-Fujian 
food, Fast food-Noodle 
restaurant, Snacks-Others, 
Snacks- Spicy Hot Pot} 

Xiangan 
District 

{ } {Fast food-Western food, Casual 
dining-Drinks}  
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mitigating the risk of opening a store in an inappropriate location. 
Secondly, the outcomes of this study reveal that the prevalent pat

terns for the same type of restaurant differ across various districts, of
fering insights into how services can be more effectively designed and 
marketed. For instance, in the case of a formal dining western restau
rant, the prevalent patterns in Huli District and Siming District are 
distinct. If a firm plans to establish a formal dining-Japanese restaurant 
in Huli District, it might explore joint marketing and promotion op
portunities with coffee shops. However, if the firm is considering a 
similar restaurant in Siming District, it may incorporate BBQ services in 
its offerings and marketing strategies. 

Finally, this study highlights the value of information derived from 
the restaurant graph structure for both operational and marketing pur
poses, emphasizing the complementary nature of these two disciplines. 
As a result, it suggests that marketing managers should collaborate with 
operations managers in the initial stages of location selection. This 
managerial insight extends beyond restaurant location selection and 
operations, providing relevant for addressing location issues in various 
industries such as hotels, retail outlets, and others. 

5.3. Limitations and future works 

This study comes with certain limitations, suggesting avenues for 

future research. Firstly, the analysis only accounts for the distance of 
restaurant nodes on a two-dimensional plane. Subsequent research 
could extend this to three dimensions to delve deeper into consumption 
behavior. Secondly, the study overlooks the impact of takeaway ser
vices, which could be an influential factor in store location decisions. 
Future studies might explore the implications of takeaway services on 
restaurant locations. Lastly, enhancing the classification granularity of 
restaurants could improve the interpretability of algorithm results. 
Future investigations could leverage text mining and image recognition 
to address this aspect. 
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Appendix A 

Fig. 8. Kernel density heat map of restaurants with different ratings and consumption levels. (a) Low rating and low consumption (b) Low rating and high con
sumption. (c) High rating and low consumption (d) High rating and high consumption. 
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Algorithm 1. Dataset partitioning process 
1 Input: Dataset D = {cube1,cube2, ..., cubec}, the proportion of training set is p. 

2 Initialization:Defining training set as D1, testing set as D2, and candidate neighbor set as D2 

3 cubej←random(D)// Randomly selecting a cube as the beginning cube. 
4 D2←D2 +cubej // Adding the cube into testing set. 
5 While size(D2) < ρ(1-p) //ρ is the total number of cubes. 
6 D2←D2 + neighbor(D2)//Adding all neighbor cubes of testing set into candidate neighbor set. 
7 cubem←random(D2) // Randomly selecting a cube from candidate neighbor set. 
8 D2←D2 +cubem // Adding the selected cube into testing set. 
9 D1←D − D2//Obtaining the training set 
10 output: Training set D1 and testing set D2    

Algorithm 2. Obtain the maximal clique 
1 Input: Graph Gλ and point set E(Gλ) = {O,m2,m2, ...,mn} //O,m2,m2 , ...,mn are the points in Graph Gλ. 

2 Initialization: Defining maximal clique set Q(Gλ) = {Qk|k ∈ [1, n]}. 
3 for k in [1, n] // n is the total number of points in graph Gλ. 
4 Qk.add (O,mk) // Adding point O and point mk into Qk. 
5 for j in (k, n] 
6 γ←Ture 
7 for i in [1, k] 
8 if 

{
mk,mj

}
⊆ Qi //Deleting mj if connection between mkandmj has existing in Qi. 

9 γ←False 
10 break 
11 if γ = False 
12 continue 
13 φ←True 
14 for q in E(Qk) //E(Qk) is point set of Qk. 
15 if qmj = 0 // There is no connection between point q and point mj. 
16 φ←False //mj is not the point we are searching for. 
17 break 
18 if φ = True //Judging if point mj has relationship with all points in E(Qk). 
19 Qk.add (mj) // Adding point mj into Qk. 
20 output: Q(Gλ) = {Qk|k ∈ [1, n]} // The maximal clique set of Graph Gλ.    

Algorithm 3. Determining the prevalent co-location pattern, named colo_tree() 
1 Input: Spatial co-colocation pattern P 

2 Initialization: Prevalent co-location pattern set P Participation threshold PI 
3 While size(P) > 1 // The judging process only continue when there are at least two features. 
4 if pi(P)⩾PI // Calculating its participation degree and comparing it with participation threshold. 
5 if P not in P 
6 P←P+P // Updating the prevalent co-location pattern set 
7 else 
8 for f in P //Obtaining the subsets of P 
9 sub P←P 
10 sub P←sub P − f //Deleting a feature from P to obtain the subset 
11 self. colo_tree(sub_P) //Embedding the algorithm 3 colo_tree to further judge current subset, //In new cycle, the input is sub_P 
20 output: Q(Gλ) = {Qk|k ∈ [1, n]} // The maximal clique set of Graph Gλ  

Appendix B. . Restaurant type hierarchy  

H1 H2 

Dinner(23 items in total) Eg. Fujian food, Northeast food, BBQ and others 
Fast food(24 items in total) Eg. Fujian food, Northeast food, BBQ and others 
Snacks(4 items in total) Eg. Pasta, Fried food, Spicy Hot Pot and others 
Casual dining(3 items in total) Cafes, drinks, bars 
Dessert(1 item in total) Bread dessert  
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