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ABSTRACT

This study proposes a new prescriptive analytics method that aims to provide decision-makers with a systematic
and objective approach to identify suitable locations, considering the spatial distribution of different types of
restaurants. The method comprises of two main components: spatial co-location pattern mining and loca-
tionGCN, where locationGCN is based on graph convolutional network (GCN). The spatial co-location pattern
mining is utilized to capture the spatial correlation of specific restaurant to determine the candidate location
selection range. The locationGCN is designed to further screen out final suitable location ranges for the specific
restaurant type. A case study using restaurant data from Xiamen Island collected from Dianping.com is con-
ducted. The empirical results demonstrate that the algorithm achieves an accuracy of 74.88%, precision of
63.59%, and recall of 77.48%. Results indicate that the proposed approach can provide suitable location rec-

ommendations for specific types of restaurants based on existing restaurant distribution information.

1. Introduction

Selecting the right location is crucial for the business success (Chen &
Tsai, 2016). Statistics reveal a harsh reality, with 17 % of restaurants
failing within their first year, and a median lifespan of just 4.5 years for
new restaurants (Luo & Stark, 2015). Chain restaurants, like The
Cheesecake Factory in the United States, often employ a strategy of
closing underperforming outlets while simultaneously opening new
ones, leading to consumer churn (Soysal et al., 2019).

Many studies have concentrated on the descriptive analytics of
location selection, exploring the correlation between restaurant location
and regional characteristics at the regional unit level. However, a sig-
nificant gap exists as these studies often lack concrete and practical
methodologies to aid in making location decisions (Chen & Tsai, 2016).

Conversely, certain research efforts have focused on prescriptive
analytics, utilizing methodologies like rough set methods (Chen & Tsai,
2016) and the analytic hierarchy process (Erdogan & Kaya, 2016). These
studies transcend mere observation, offering practical solutions for
restaurant companies to improve their decision-making processes. The
core concept involves assigning weights to various indicators to obtain
the evaluation scores. Nevertheless, a drawback of these methods is their
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uniform application of identical weights across diverse restaurant types.
This limitation overlooks the intrinsic diversity and aggregation char-
acteristics of various restaurant types, potentially leading to suboptimal
location decisions.

The aggregation characteristics of restaurants often arise from the
merging of diverse consumer groups, analogous to the impact of spatial
dependence and spatial heterogeneity (Kim et al., 2020). Drawing par-
allels with the “coexistence” relationship among points of interest, the
process of spatial co-location pattern mining enables the identification
of restaurant types strongly correlated with specific categories in a given
space (Yao et al., 2017). Stemming from economic geography, the
geographical proximity theory posits that the spatial closeness of entities
influences the performance of co-located actors, reflecting area char-
acteristics (Nowinska, 2019). Consequently, the restaurant graph
structure derived from co-location in different regions can provide
valuable insights into understanding trade area characteristics and
uncovering potential location opportunities. Nevertheless, it is note-
worthy that there has been limited research specifically dedicated to
exploring the structure of the restaurant graph.

Progress in computer science, data mining, and machine learning
techniques has opened avenues for extracting spatial distribution
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information from existing restaurants (Kumar et al., 2018; Queenan
et al., 2019). Nonetheless, effectively capturing the spatial distribution
features of gatherings, particularly concerning restaurants, can still pose
challenges.

This study introduces a prescriptive analytics framework that in-
corporates spatial co-location pattern mining and a graph convolutional
network (termed as locationGCN). The aim is to effectively capture the
spatial features of restaurants and provide support for location de-
cisions. This framework contributes significantly to the field in several
ways:

a) Theoretical Innovation: Theoretical innovation is a cornerstone of
this study, emphasizing the consideration of the diversity of restau-
rant types in the location selection process. This recognizes the
intricate superposition of restaurant characteristics, underscoring
that, beyond distance relationships, other spatial relationships
challenging to quantify through traditional methods should not be
overlooked.
Methodology Innovation: The proposed method integrates advanced
techniques from both spatial analysis (spatial co-location pattern
mining) and machine learning (graph convolutional network). This
comprehensive and data-driven approach captures and models the
spatial features of restaurants. Spatial co-location pattern mining
identifies the candidate location range, while the designed loca-
tionGCN delves into intricate spatial information beyond Euclidean
data. This strategic use of locationGCN complements and addresses
the limitations of spatial co-location.

c) Application Innovation: Focused on prescriptive analytics for loca-
tion selection, our study introduces a novel data mining framework
designed to provide decision support for restaurant location de-
cisions. This framework extends the application of the combination
of co-location and GCN to address challenges in the domain of
location selection.

b

~

The paper is organized as follows: Section 2 reviews the relevant
literature. Section 3 outlines the spatial data mining method proposed
for location selection. In Section 4, empirical studies demonstrate the
effectiveness of the proposed approach, with results compared to other
methodologies. Finally, Section 5 concludes the paper and discusses
future research directions.

2. Literature review

This work focuses on prescriptive analytics for location selection,
offering a recommendation based on a spatial data mining method that
incorporates co-location and GCN. In this section, we delve into each,
emphasizing the aspects most pertinent to the problem under study.

2.1. Prescriptive analytics

Unlike descriptive and predictive analytics, prescriptive analytics is
geared towards identifying the optimal course of action for the future. Its
aim is to provide adaptive, automated, constrained, time-dependent,
and optimal decisions (Charles Vincent et al., 2022). From a human
intervention standpoint, prescriptive analytics can be divided into two
types: decision-making and decision automation (Lepenioti et al., 2020).
Decision-making involves offering recommendations, while decision
automation entails the execution of the prescribed action.

Despite being considered relatively immature compared to descrip-
tive and predictive analytics, prescriptive analytics has seen increased
application in various fields in recent years. Examples include urban
facility planning (Brandt et al., 2021), stochastic dynamic vehicle
routing problems (Soeffker et al., 2022), and so on. These instances
represent recent advancements in the field of business analytics.

Indeed, there is a growing trend towards employing machine
learning and data mining for prescriptive analytics (Hauser et al., 2021;
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Notz & Pibernik, 2022). Lepenioti et al. (2020) have emphasized that
prescriptive analytics models have the potential to provide more
objective advice than traditional analysis. Therefore, in the context of
location selection research, the integration of prescriptive analytics is
seen to effectively mitigate the impact of subjectivity.

2.2. Location selection theory and approach

The location selection problem has been thoroughly examined in
various literatures. Classic location theories, such as the central place
theory (Bustin, 2020) and spatial interaction theory (Wieland, 1932),
assert that the distance between the store and the customer is a crucial
factor in location selection. Recent research reinforces the ongoing sig-
nificance of geographic proximity in supply chain location selection
(Bray et al., 2019). Additionally, Aksoy and Yetkin Ozbuk (2017)
highlight accessibility and convenience as influential factors in hotel
location selection.

As transportation advances, the significance of physical distance
diminishes, but geographic convenience remains crucial. Studies have
shifted focus to various trade area characteristics, including consumer
factors (Dan & Marcotte, 2019), demographics (Cao et al., 2020), market
conditions (Yang et al., 2017), and demand interactions (Huang et al.,
2019). Yang and Mao (2020) argue that store distribution in a trade area
results from both competition and agglomeration effects. Kim et al.
(2021) used a spatial econometric model to identify spatial spillover
effects of agglomeration economies. However, capturing the complex
interaction solely through mathematical models remains challenging.
This paper addresses this challenge by constructing a restaurant graph to
capture spatial interaction information, focusing on mining spatial
location relevance to discern regional characteristics.

Yang et al. (2017) showcased a strong correlation between the
number of different restaurant types in each region and demographic
characteristics. Their findings imply that the appropriateness of a loca-
tion depends on the specific types of restaurants it hosts. Therefore, we
emphasize the importance of considering the diversity of restaurant
types in the process of location selection.

So far, a limited number of studies have delved into restaurant
location issues (Chen & Tsai, 2016), while multi-criteria decision-mak-
ing (MCDM) approaches are generally adopted in it (Liu et al., 2020).
However, these methods often involve complex artificial evaluations
and are inherently subjective. Therefore, this paper aims to introduce a
novel prescriptive analytics method to enhance the efficiency and ob-
jectivity of restaurant location selection.

2.3. Spatial data mining

Recently, there has been a notable interest in spatial data mining
methods, with the analysis of spatial associations being a crucial
component (Bai et al., 2016). Particularly, spatial co-location has been
successfully applied in studying location selection for hotels and other
facilities (Yan et al., 2018). However, no scholars have applied co-
location pattern mining to restaurant location research.

Spatial co-location models effectively capture the aggregation of
spatial features, yet they often fall short in considering specific spatial
relationships among points of interest and may not thoroughly explore
these relationships (Wang et al., 2022; Yao et al., 2018). Some re-
searchers have employed spatial co-location models for points of interest
recommendations (Chen et al., 2022). However, they primarily mined
relevant mobility patterns, and the effectiveness of these models is
frequently hindered by data sparsity issues (R. J. Hu et al., 2022). There
is also a significant portion of scholars who is dedicated to improving the
efficiency of co-location algorithms (Z. Hu et al., 2022; Wang et al.,
2024; Wu et al., 2022). However, no research exploring the integration
of emerging graph deep learning techniques with co-location studies.

In recent years, various advanced models for location selection have
been proposed (Jiao et al.,, 2020), incorporating metaheuristic
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algorithms (Dan & Marcotte, 2019), data mining (Chen & Tsai, 2016),
and machine learning (Han et al., 2022). Among these, the graph con-
volutional network (GCN) stands out, which is a simplified graph con-
volutional neural network proposed by Kipf and Welling (2016).

The application of GCN has garnered increasing attention in recent
research (Lee & Rhee, 2022). The widespread use of GCN is attributed to
its ability to integrate node feature information and local structure in-
formation, facilitating the processing and learning of non-Euclidean
data (Kipf & Welling, 2016). This capacity addresses the limitation of
co-location methods, which often fall short in mining spatial interaction
relationships between points. Non-Euclidean data, characterized by
irregular spatial structures like social networks and points of interest
networks, is well-suited for representation using a graph structure (Kipf
& Welling, 2016). Consequently, our approach aims to combine spatial
co-location pattern mining with GCN, creating an innovative spatial
data mining framework tailored for restaurant location decisions.

3. Proposed method

In the following, we describe how we deal with the restaurant
location selection problem as sequential decision processes. The pro-
cesses are shown in Fig. 1.

Like other prescriptive analytics processes, the information model is
constructed at first to predict which kind restaurant is encouraged to
locate together with, where we introduce the co-location pattern mining
to predict the candidate range of location selection. Then we propose the
decision-making method based on locationGCN to further reduce the
scope of location selection and determine the final location selection. To
make the process clearer, we introduce the key parts of processes in this
section.

3.1. Divide the dataset into training set and testing set

Referring to Bao and Wang (2018), to not disrupt the spatial conti-
nuity of the data, we divide the area into square grids of the same size
and divide the dataset according to the number of grids. The partitioning
process is shown in Appendix A algorithm 1.
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3.2. Construct the restaurant graphs with labels

Using the obtained training set and testing set, separate restaurant
graphs are constructed. Given that, in the real world, improper site se-
lection often results in low restaurant revenue and eventual closure
(Chen & Tsai, 2016), we can assume that the location selection of
existing restaurants is generally appropriate to some extent. Therefore, a
graph containing a specified type of restaurant is labeled 1, indicating
the location is suitable for that type of restaurant. Conversely, if a
specified type of restaurant is not present in the graph, it is labeled with
0, signifying that it is unsuitable for location selection.

Assuming that the specified type of restaurant is O, its corresponding
restaurants in the space are set as O, (4 € [1, A]), where A is the total
number of the restaurant of type O. Then, with O, as the center of the

circle, and the distance threshold d as the radius, search the restaurant
nodes that maintain the neighbor relationship with the restaurant O, to
form a graph G;, which is labeled 1.

In addition, for the rest restaurants that do not keep the neighbor
relationship with the specified type of restaurants, we use hierarchical
clustering to merge them into cliques. To ensure that any two nodes in
the same cliques keep neighbor relationship with each other, the hier-
archical clustering based on longest distance method is adopted. It
means that the distance between two cliques is measured by the distance
between the farthest points within these two cliques. The clustering
process as follows: merge the closest samples into one clique, and then
merge the two closest cliques each time, where the merging operation is
only taken when the distance between two cliques is shorter than dis-

tance threshold d. Consequently, when the distance between any two

cliques beyond distance threshold H, the merging process stops, and final
cliques are obtained, which are regarded as graphs labeled 0.

Fig. 2 shows the examples that contains five constructed graphs.
Graph G1, graph G», and graph Gs are labeled 1, and graph G and graph
G4 are labeled 0.

As shown in Fig. 2, the distance between graph G3 and graph G4 is
determined by the distance between restaurant A3 and restaurant B4,
because it is the farthest distance between nodes in graph Gs and graph
G4. Besides Fig. 2 also shows the situation that there is more than one

Divide the dataset into training
set and testing set

Construct the restaurant
graphs with label 1 and 0

Spatial co-location
pattern miming

Restaurant graphs in
training set

Prevalent pattern of ; !
the specified type of |

restaurant Restaurant graphs in

testing set

Restaurant graphs with

the prevalent pattern
LocationGCN (Candidate location range)
Training model J Testing model
Evaluation

Fig. 1. The framework of proposed method.
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Neighbor connection
between nodes

Distance between graphs
‘ Restaurant of specified type

O Restaurant of other types

Fig. 2. Example for explanation of constructing graphs.

restaurant of the specified type in the constructed graph. Taking graph
G, and graph Gs as examples, both restaurant O5 and restaurant O2 are
the specified type of restaurant. While in graph Gs, restaurant O5 is
taken as the central restaurant and restaurant O2 is remained as the
neighbor restaurant which has the same type as the central restaurant.
But in graph G, it is reverse. It should be noted to distinguish the central
restaurant and its neighbor restaurants though their types maybe the
same.

3.3. Spatial co-location pattern mining

After obtaining the restaurant graphs, using the spatial co-location
pattern mining based on maximal clique (Zhang et al., 2022) to find
the prevalent co-location pattern of the restaurant with specified type.
Because the focusing is to find out the types that the restaurants of
specified type tend to locate around, the spatial co-location pattern
mining process is only carried out based on the restaurant graph with
label 1 in training set.

3.3.1. Basic concepts

Center restaurant: It identifies the restaurant object with specified
type that we regard as the center of the restaurant graph.

Spatial feature of the restaurant in neighbor range: It is the type of
neighbor restaurant, like the feature set of the graph G; in Fig. 2 is
{A,B,C,D}.

Co-location pattern of specified type of restaurant: It is the set of a
series of spatial features within the neighbor range of specified type of
restaurant, besides, any two restaurants in co-location pattern keep
neighbor relationships with each other. For example, one of co-location
pattern of specified type restaurant in graph G; in Fig. 2 is {A,B, C}.

Spatial instance: It is the corresponding objects of spatial feature in
locations, like the spatial instance of A in graph G, in Fig. 2is A1 and A1".

Spatial co-location instance: It is a set of objects where every object
in the co-location pattern keeps the neighbor relationship with each
other, like one of the instances of the co-location pattern {A,B,C} in
Fig. 2 graph G; is {A1,B1,C1}.

Prevalent co-location pattern of specified type of restaurant: When

the occurrence frequency of spatial co-location pattern reaches a
threshold, the spatial co-location pattern is considered prevalent.

It’s essential to note that to distinguish whether there are another
specified restaurant instances in neighbor range of the specified
restaurant, the above sets do not contain the information of center res-
taurants instance. For example, if the instance of specified type O is a
Chinese restaurant, and the prevalent co-location pattern is {Chinese
restaurant, Japanese cuisine, snacks}, it means that Chinese restaurant
tends to locate with other Chinese restaurant, Japanese cuisine restau-
rants, and snacks shop in the neighbor area. Therefore, a location that
contains other Chinese restaurant, Japanese cuisine restaurants, and
snacks is advise to as candidate addresses for Chinese restaurants.

In particular, the “Chinese restaurant” in prevalent co-location in-
dicates that there is at least one another neighbor restaurant whose type
is Chinese restaurant, and the neighbor Chinese restaurant tends to have
a positive spillover effect on the central Chinese restaurant. Conversely,
if the prevalent co-location pattern is {Japanese cuisine, snacks}, it
represents that there is no other instance of specified type restaurant in
the neighbor range, which may mean that if this type of restaurant
gathers, it will mostly generate a fierce competitive effect. Thus, this
type of restaurant tends to select location dispersedly.

3.3.2. Prevalent co-location pattern mining process

The process of prevalent spatial co-location pattern mining method
with join-base is a time-consuming process (Yao et al., 2016). Therefore,
the prevalent spatial co-location pattern mining method based on
maximal clique (Zhang et al., 2022) is adopted in this paper. The process
of the detail mining contains three main steps.

a) Finding the spatial co-location instances to obtain the corre-
sponding spatial co-location pattern.

We only pay attention to the co-location pattern which contains the
specified type of restaurant. Therefore, we focus on the restaurant dis-
tribution graph G, labeled 1, finding out the spatial co-location instances
to determine the existing co-location patterns of specified type of
restaurant. Based on the idea of Bron-Kerbosch algorithm (Zhang et al.,
2022), the spatial co-location instances are found out by determining the
maximal clique set of the specified type of restaurant. The process of
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mining the maximal clique set is shown in Appendix A algorithm 2,
where the central restaurant instance is not shown in the maximal
cliques.

Taking the Graph G; in Fig. 2 as an example, according to the Al-
gorithm 1, the maximal cliques of specified type of restaurant in Gy
include {A;,B1,C1}, {C1,D1}, and {Dl,All}. Therefore, the corre-
sponding co-location patterns of specified type of restaurant is {A, B, C},
{C,D}, and {D,A}.

b) Calculating the participation rate and participation degree of each
co-location pattern.

The spatial co-location pattern mining algorithm is used to capture
the prevalent co-location pattern in training set, thus the counting of
instances in this section is only in training set. We define the instance
number that each feature participates to the co-location pattern in-
stances as symbol a, and the total spatial instance number of each
feature as symbol b, then the participation rate of each feature in co-
location pattern is the ratio of a to b. It’s important to note that b con-
tains the spatial instance of feature point in the graph labeled 0. While
the participation degree of spatial co-location pattern is the minimum
value of the participation rate. Taking the co-location pattern {A, B, C}
in Fig. 2 as an example, its participation degree is %.

c¢) Determining the prevalent co-location pattern.

Initially, a hyper-parameter named participation threshold is deter-
mined. When participation degrees of spatial co-locations surpass the
participation threshold, we categorize the spatial co-location pattern as
a prevalent co-location pattern.

The process of determining the prevalent co-location patterns is
shown in Appendix A algorithm 3. When the current spatial co-location
pattern is not prevalent, it needs to continue to judge whether its subsets
are prevalent. The judging process only stops when the subset only
contains one feature, or it is a prevalent co-location pattern.

The obtained prevalent co-location pattern represents a stable mar-
ket state, reflecting the experiential information of location selection
(Bao & Wang, 2018). It unveils the distribution characteristics of res-
taurants, indicating which types of restaurants tend to cluster together.
Unlike previous literature (Yan et al., 2018), we retain all prevalent co-
location patterns rather than only focusing on those with a large number
of feature types. However, relying solely on prevalent co-location pat-
terns is inadequate for determining the appropriate location for a
specified type of restaurant, as it overlooks other restaurant features.
Therefore, prevalent co-location patterns are only used to establish the
candidate location selection range, and locationGCN is introduced to
further explore spatial information to determine the final locations.

3.4. LocationGCN model construction

The distribution of restaurants in space often seems irregular, and
under the interaction of spillover effects and competitive relations,
different types of restaurants may adopt different location strategies.
locationGCN can analysis the spatial relationships of different types of
restaurants to further reduce the scope of location selection. In this
section, we firstly introduce the definition of graph information, which
is as the input of locationGCN, then the specific mining process is
described, and the final location selection is decided.

3.4.1. Definition of graph information

Define the graph as G = (V,E, X), where V denotes the set of ver-
texes, and V = {v;[i=1,2,...,n} € R", n is the total number of nodes in
each graph, E represents the set of edges, and X is the normalized feature
matrix of node, X = [x;,x2, ...7xn]T € R"*¢, where each feature is a c
dimension feature vector, x; € R°.

To mitigate the impact of information from the central restaurant in
the graph labeled 1 on the classification results, the feature vector of the
central restaurant node is intentionally left empty. Consequently, the
central node lacks feature information but serves as a conduit for other
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nodes to exchange information.
Based on Tobler’s first law of geography that the closer the distance
is, the stronger the spatial objects are related (Joo et al., 2017), we use
the distance relationship between restaurants to describe the relation-
ship between restaurants. Therefore, the adjacent matrix is shown as
formula (1):
L (vv) €E
- Vi Vi

A=< di )}
0, (vi,v)) ¢ E

Where Aj is the adjacency relationship between node v; and v;, which
forms the adjacency matrix A, A € R™". Symbol d; denotes the distance
between restaurant nodes. Only when there is a connection between
node v; and v;, there is an adjacency correlation between them.

Then the input graph information of locationGCN is obtained,
including feature matrix and adjacent matrix.

3.4.2. locationGCN network structure

locationGCN takes restaurant graph set as the input, and outputs the
corresponding labels. The network structure of locationGCN is shown as
Fig. 3. There are three important modules: convolution layer, global
pooling layer, and softmax function.

a) Convolutional layer.

This paper constructs the convolution model based on the model
proposed by Kipf and Welling (2016), which is shown as formula (2):

Hy") = o <DéAD%HV(’> wo ) @)

Formula (2) is the propagation rule for GCN, symbol Hy® is the
output of all nodes in the layer [, H,® =X, A=A+I s Eii = ZinJ’ and
symbol WU is the parameter matrix to be trained for the layer [, and ¢ is
the activation function.

The convolutional layer is employed to aggregate spatial information
for each point. The output from the previous layer serves as the input for
the current layer. After each convolutional layer, the information for the
points is updated.

b) Global pooling layer.

As this paper involves multiple graph classification, the global
pooling layer is utilized to consolidate the outcomes of all nodes on a
single graph to derive the graph’s classification information. Following
the approach outlined in the literature (Li et al., 2015), the pooling
mechanism is defined by formula (3).

Y= tanh(Zo(fl (H!™Y x,)) @ tanh (6 (H™) ) x,)))A = 1,2,3,.., TG (3)

vev

where symbol Y, is the outputs of global pooling layer of graph G;, TG is
the total number of graphs, fi(-) and f(-) are the full connected func-
tions, and its inputs are convoluted feature and the normalized feature of
each node in G;. o(-) is a soft attention mechanism, which can make the
networks pay more attention to the more important points. tanh(-) is an
activation functions, and ® is an operational symbol, which can multiply
elements of two matrices based on their corresponding position.

¢) Softmax function

As it is a binary classification problem, the softmax function is
applied to map the output results of the pooling layer into the range of
0-1, as depicted in formula (4).

exp (}7,.>
Y, = softmax(Y,) =—— 2/
>,exp <Y,1>

where symbol Y is the predictive value, which refers to the probability
that graph G, corresponds to label 1, then its probability of label 0 is

1=1,2,3,..,TG (4)
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Fig. 3. The network structure of locationGCN.

1-Y,.

The entire network utilizes a backpropagation algorithm for weight
updates, and we employ the adaptive moment estimation (Kingma & Ba,
2014) as the optimizer. Given that this study is a classification problem,
we compute the loss function using cross-entropy, as illustrated in for-
mula (5).

L =->YmnYi=123_.,TG )
A

where symbol Y, is the actual value of G,.
Finally, the predict label value u; is determined by the formula (6):

_f0,7,<05
= { 1,Y,205 ©®

3.4.3. Determine final location selection scope

Using locationGCN, we conduct a secondary screening on instances
in the testing set that meet the criteria of the prevalent co-location
pattern. Subsequently, we identify the restaurant instances that are
most suitable for the specified restaurant to gather. Managers can make
informed decisions on the optimal location for the specified restaurant
by referring to these identified restaurant instances. The final location
selection scope, depicted in the shaded area, is illustrated in Fig. 4.

As depicted in Fig. 4, three restaurants (A, B and C) are notably
associated with the specified type of restaurant. By taking the distance

threshold d as the radius, the optimal scope for the location selection of
specified restaurant is determined by the overlap of the three regions,
indicated by the shaded area.

3.5. Evaluation method

The predicted results can be classified into four categories:

True positive (TP): The actual value is positive (Y = 1), and the
predicted value is positive (Y = 1).

False positive (FP): The actual value is negative (Y = 0), and the
predicted value is positive (}A’ =1).

True negative (Soysal et al.): The actual value is negative (Y = 0),

and the predicted value is negative (Y = 0).

v

Fig. 4. The illustration of final scope of location selection.

False negative (FN): The actual value is positive (Y = 1), and the

predicted value is negative (? =0).

For classification problems, this paper employs four main evaluation
indicators: accuracy, precision, recall, and AUC. Formulas (7), (8), and
(9) depict the calculation of accuracy, precision, and recall. Meanwhile,
AUC represents the area under the ROC curve, with the ROC curve’s
abscissa denoted as FPR (as shown in formula (10)), and the ordinate
equivalent to recall. AUC values exceeding 75 % indicate a well-
performing predictive model.
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TP + FN

ACCUracy = o p T EN 7
precision = % €]
recall = TP:‘—% (€)]
FPR = FPF+—PTN (10)

A total of 10 experiments are conducted, and the average of all
evaluation values is calculated to represent the algorithm’s performance
under various parameter settings.

4. Case study
4.1. Data acquisition

We utilized restaurant data from the “Food” section of the website
“https://www.dianping.com” in December 2019 as a sample for our
study. Dianping.com is the leading platform for consumer reviews of
daily consumption experiences in China, comparable to Google Review.
The extracted fields include restaurant name, code, type, administrative
district, specific address, average price, taste, environment, and service
rating.

We created a feature vector for each restaurant node, incorporating
the average price, taste rating, environment rating, service rating, and
restaurant type. To validate the accuracy of the restaurant data, we
cross-referenced it with information obtained from Baidu Map (htt
ps://map.baidu.com). After acquiring basic details, we utilized the
Baidu Map open platform (https://Ibsyun.baidu.com) to retrieve the
longitude and latitude of each restaurant based on its address.

4.2. Data pre-processing

We classified the crawled restaurant data into two tiers, H1 and H2
(refer to Appendix B), based on the official restaurant industry classifi-
cation standard from the State Food and Drug Administration (SFDA)
and the National Bureau of Statistics (NBS) “Statistical Classification of
Living Services (2019).” This classification was complemented by
Dianping.com’s own categorization method, aligning with the respective
criteria.

The initial parameters for the algorithm are defined as follows: for

co-location pattern mining, the distance threshold (H) is set to 100 m,
the participation threshold is 0.3, and the training set proportion is 2/3.
In LocationGCN, the validation set proportion is 1/2, the number of it-
erations is 200, and the initial learning rate is 0.01.

4.3. Location selection experiment

4.3.1. Data description

We gathered a total of 13,539 pieces of restaurant data from
Dianping.com for Xiamen Island, utilizing the latitude and longitude in-
formation of the crawled restaurants. Some nodes overlapped on the
map due to proximity or being on different floors of the same location,
rendering them not visible.

4.3.2. Example of calculation analysis

We use the grid method to process data, dividing the map of Xiamen
Island into 71 grids. Each grid is approximately 1510 m wide. The grids
can cover the entire range of the Xiamen Island map, and the redundant
area is relatively small. Then, 47 grids are used as training areas and 24
grids as the test areas.

We chose “Dinner-Western food” and “Fast food-Western food” as
examples, with second tier category “Western food”. The results of the
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algorithm can be observed for restaurants with the same taste at
different price levels.

The results indicators for the two experiments are presented in
Table 1. The ultimate prevalent co-location patterns for restaurants of
the type “Dinner-Western food” include: {Dinner-Japanese food, Casual
dining-Cafes, Dinner-Seafood}, while for restaurants of the type “Fast
food-Western food” include: {Fast food-Seafood, Casual dining-Drinks},
{Dinner-Seafood, Dinner-Hotpot, Casual dining-Cafes}, {Dinner-BBQ,
Casual dining-Drinks, Fast food-Western food}. Fig. 5 illustrates the al-
gorithm’s results for these two types of restaurants.

Table 1 reveals that the algorithm yields different results for speci-
fied types of restaurants under different categories. Restaurants cate-
gorized as “Dinner-Western food” tend to be more upscale, offering
higher-quality products and dining environments. Among the strongly
associated restaurants in this category, aside from cafes, there are
mainly higher-priced formal dining options, indicating a higher
spending capacity among these consumers. In contrast, “Fast food —
Western food” covers a larger area on the island and has more prevalent
co-location patterns, suggesting a broader association with various
restaurant types. In terms of accuracy, the algorithm for “Dinner-West-
ern food” is less precise because there are more false positives (areas
with yellow dots but not covered by blue dots in Fig. 5 (a)). However,
this also implies the presence of potential consumers in these areas and
the possibility of emerging new restaurants of this type.

Compared to the high-end “Dinner-Western food,” “Fast food —
Western food” is more accessible and has a wider distribution. It exhibits
more prevalent co-location patterns, showing strong associations not
only with other fast food and casual dining establishments but also with
some restaurants in the formal dining category. The presence of multiple
prevalent co-location patterns indicates that the distribution of “Fast
food — Western food” restaurants is influenced by three main types of
patterns, as reflected in the results. It is conceivable that these three
distribution patterns represent three types of shopping areas suitable for
locating “Fast food-Western food” restaurants, each with the potential to
attract different preferences.

Taking one of the patterns of the “Fast food-Western food” type,
{Dinner-Seafood, Dinner-Hotpot, Casual dining-Cafes}, as an example, it
represents the characteristic of a large commercial plaza, while {Fast
food-Seafood, Casual dining-Drinks} is more akin to the setup of an
affordable food court. In terms of the numerical results, Fig. 5 (b) shows
that some shop locations are still not identified, indicating more false-
negative cases (areas with only blue dots but not covered by yellow
dots in Fig. 5 (b)). This results in a low recall in the findings, suggesting
that there might be a different clustering pattern with other types of
restaurants in the test area compared to the training area for “Fast food
— Western food™.

4.3.3. Sensitivity analysis

To assess the impact of each parameter on the algorithm results and
identify suitable parameters, experiments are conducted for all cate-
gories in sequence. The average values of the evaluation indicators ob-
tained in each experiment are then used to gauge the algorithm’s
performance.

a) Number of neural network layers. The results (Table 2) indicate a
noticeable drop in the accuracy of the algorithm when increasing the
number of convolutional layers. This decline could be attributed to
the expanded consideration of neighboring nodes by LocationGCN,
extending from the first level to multiple levels when increasing the

Table 1

Calculation results of the algorithm in %.
Specify type Accuracy Precision Recall AUC
Dinner — Western food 75.66 30.61 83.33 78.98
Fast food — Western food 80.28 69.49 73.21 78.71
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Fig. 5. Results of the algorithm. (a) “Dinner — Western food” type. (b)“Fast food — Western food” type.

number of convolutional layers. Excessive convolutional layers may b) b.Distance threshold. As depicted in Fig. 6, in this experiment, the
lead to over-smoothing, causing the distinctions between nodes to optimal distance threshold is found to be between 50 m and 100 m,
blur and diminishing the algorithm’s effectiveness. Consequently, indicating that restaurants within this proximity around the specified
the algorithm employs only one convolutional layer. type of restaurant have the most significant impact. This contrasts

notably with the findings of Bao and Wang (2018), who identified
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Table 2

Performance of the algorithm with different number of convolution layers (Unit:
%).

Number of convolution layers Accuracy Precision Recall AUC

1 74.88 63.59 77.48 75.40
2 61.70 50.00 27.78 55.27
3 59.96 42.99 26.14 52.93

the optimal distance threshold as 2 km. The difference arises due to
the relatively close clustering of restaurants in this study compared
to the location of POIs in the literature, necessitating a smaller
optimal distance threshold for the algorithm.

¢) Participation threshold. As shown in Fig. 7, when the participation
threshold is too small, all indicator values are low. This is due to a
large number of less-associated restaurant patterns being considered
as prevalent co-location patterns in LocationGCN. On the other hand,
when the participation threshold is too large, fewer patterns are
retained, leading to the omission of many viable regions, causing a
decrease in accuracy, recall, and AUC. Consequently, the participa-
tion threshold is set at 0.3.

4.3.4. Algorithm comparison results
To affirm the superiority of the co-location + LocationGCN algorithm
in this study, comparative experiments were conducted. The results,
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categories included in the pattern to obtain the final prevalent co-
location pattern, tends to discriminate some feasible regions as infea-
sible, resulting in its lowest recall. Additionally, the traditional co-
location algorithm can only capture spatial information from
Euclidean data, neglecting the complex superposition of restaurant
characteristics, leading to high false positives (FP) and low precision.
Secondly, using LocationGCN alone lacks a filtering indicator for
restaurant types initially, resulting in bias generated by data imbalance.
Lastly, the CNN algorithm cannot effectively consider the spatial dis-
tribution of restaurants; it only takes the type of restaurants and other
information as input data, leading to lower performance across all in-
dicators compared to the algorithm used in this study. Consequently, the
co-location and LocationGCN-based algorithm proves more suitable for
location selection decision-making.

4.4. Prescriptive analytics of restaurant locations and consumer
preferences

To investigate how diverse flavors and price ranges influence the
spatial arrangement of restaurants in distinct regions, we conducted an

Table 3
Comparison of the performance of the various algorithms (Unit: %).

. . ) . Algorithms Accuracy Precision Recall AUC
based on the data introduced in section 4.3.1, are presented in Table 3.
The experimental data show that the co-location + LocationGCN co-location + LocationGCN 74.88 63.59 7748 75.39
. . . . . (Algorithm for this study)
algorithm employed in this study outperforms other machine learning co-location 63.93 55.17 2119 55.42
algorithms. This superiority can be attributed to several factors. Firstly, LocationGCN (Kipf & Welling, 2016)  69.40 64.89 40.40  63.62
the traditional co-location algorithm, which filters the number of co-location + CNN 32.34 24.69 39.07  40.06
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additional experiment focusing on the administrative districts of Xiamen
City. Subsequently, we performed a prescriptive analysis of restaurant
location decisions, formulating corresponding marketing strategies
based on the experimental findings. The specified restaurant types in
this experiment are “Dinner — Western” and “Fast Food — Western”,
with the algorithm parameters configured as outlined in the previous
section.

Table 4 displays the prevalent patterns for specified restaurants in
different regions. The prevalent co-location patterns exhibit minimal
overlap in each district, indicating that consumer preferences for spe-
cific types of restaurants differ across various areas.

By amalgamating the prevailing co-location patterns based on re-
gions, it emerges that the high-end “Dinner-Western food” restaurants
tend to cluster with other formal dining establishments. In contrast, the
“Fast food — Western food” restaurants show a propensity to associate
with other fast-food eateries. Notably, “Fast-food-Western food” exhibits
a pronounced correlation with “Fast food-Noodle restaurant,” possibly
indicative of shared attributes such as quick meal turnover. Conse-
quently, for those contemplating the opening of a “Fast-food-Western
food” restaurant, it is advisable to consider locations near establish-
ments with a high turnover rate.

Furthermore, the identified prevalent patterns offer insights into
whether restaurants of the same type in a specific area tend to cluster
together. For instance, in Siming District, the pattern {Dinner-BBQ,
Casual dining-Drinks, Fast food-Western food} suggests that “Fast food —
Western” establishments in this area exhibit a preference for co-locating
with similar types, indicating potential benefits from spillover effects
within the same category. Consequently, for a new “Fast food — Western”
restaurant in Siming District, it is advisable to consider locating in
proximity to other establishments of the same type.

To conduct a more in-depth market analysis and provide strategic
marketing insights, a kernel density heat map is presented in Fig. 8.
Notably, high-rated and high-consumption restaurants are primarily
situated in Huli and Siming districts (Fig. 8 (d)), while low-rated and
high-consumption restaurants are exclusively found in Huli district
(Fig. 8 (b)). This suggests that high-consumption restaurants in Siming
district tend to exhibit higher customer satisfaction. This correlation
could be attributed to the abundance of tourist attractions in Siming

Table 4
The prevalent pattern for specified restaurants in different regions.

Type Formal Dining — Western food Fast food — Western food
Region
Xiamen as a {Dinner-Seafood, Casual {Fast food-Noodle restaurant,
whole dining-Drinks} Casual dining-Drinks}, {Fast
food-Western food, Casual
dining-Drinks}
Siming {Dinner-Seafood, Dinner-BBQ, {Dinner-Seafood, Dinner-Hotpot,
District Dinner-Japanese food, Dinner- Casual dining-Cafes}, {Dinner-
Fujian food}, {Fast food- BBQ, Casual dining-Drinks, Fast
Western food, Casual dining- food-Western food}, {Snacks-
Drinks} Fried food, Casual dining-Drinks,
Fast food-BBQ }
Huli {Dinner-Japanese food, Casual {Fast food-Noodle restaurant,
District dining-Cafes, Dinner-Seafood} Casual dining-Drinks}, {Dinner-
BBQ, Casual dining-Drinks, Fast
food-Western food}
Tongan {} {Snacks-Other}, {Fast food-
District Western food}
Haicang {Dinner- BBQ} {Fast food-Fujian food}
District
Jimei {Casual dining-Drinks, Snacks- {Fast food-Noodle restaurant,
District Other}, {Fast food-Other} Casual dining-Drinks, Dessert-
Bread dessert, {Fast food-Fujian
food, Fast food-Noodle
restaurant, Snacks-Others,
Snacks- Spicy Hot Pot}
Xiangan {} {Fast food-Western food, Casual
District dining-Drinks}
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District, coupled with generally higher spending levels among Siming
district residents. Consequently, the likelihood of negative sentiments
arising from high prices leading to low scores is diminished.

Furthermore, the analysis of Fig. 8 (b) and (d) reveals a scarcity of
high-consumption restaurants in Tongan District. This observation
aligns with the absence of prevalent co-location patterns for “Formal
Dining — Western food” in Tongan District (Table 4). Consequently, if
you are considering opening a high-consumption restaurant, Tongan
may not be a favorable choice.

The aforementioned inference aligns with the classic 4P theory. The
existing restaurant distribution graph structure serves as a valuable in-
dicator of the demographic characteristics in the respective area. For
instance, if the restaurant distribution graph indicates a clustering of
establishments with high ratings and high consumption levels, it implies
a preference among residents for high-consumption restaurants. This
insight can offer valuable references for product positioning and con-
sumer targeting in marketing strategies.

5. Conclusion and discussion

In this study, we introduced a novel prescriptive analytics method for
location selection recommendations by integrating spatial co-location
pattern mining and LocationGCN. We collected and analyzed a dataset
comprising 13,549 pieces of data to validate the effectiveness of our
proposed framework. The experimental results demonstrate that our
approach surpasses existing methods in performance.

5.1. Implications for research

Firstly, the framework proposed in this study provides insights into
the diversity of restaurant types, offering implications not only for the
restaurant industry but also for other service sectors. In contrast to
traditional studies that mainly examine the correlation between
restaurant location and regional characteristics (Yang et al., 2017), this
research delves deeper, investigating the non-linear and intricate con-
nections among features and their superpositions within clustered
restaurants.

Secondly, this study offers novel prescriptive analytics framework for
restaurant location selection. It utilizes spatial co-location pattern
mining to determine the candidate location selection range instead of
MCDM, which eliminates the reliance on extensive operational data that
may be difficult to obtain. Furthermore, the LocationGCN is used to
determine the final location selection results by learning the spatial
distribution characteristics between different restaurant nodes, which
compensates for the deficiency of simple co-location not being able to
capture spatial specific relationships (Yan et al., 2018).

Lastly, this study introduces a fresh perspective on industrial clusters
and supply balance when assessing consumer demand. In contrast to
traditional methods like spatial econometrics modeling (Yu, 2019),
which often depend on extensive economic indicators and data, our
proposed framework leverages graph-structured data and freely avail-
able social media information for spatial analysis. Examining successful
restaurants in a specific region sheds light on the genuine needs of that
area from a supply perspective. This approach opens up new avenues for
research into the location dynamics of other consumer-oriented service
industries, such as hotels and tourism attractions.

5.2. Managerial implications

Firstly, in contrast to traditional location methods that demand
extensive investigations across various trade areas (Cheng, 2018), this
study employs an intelligent algorithm to discern the spatial distribution
information of restaurants. By considering both the spillover effects and
competition dynamics among restaurants, it provides a rational location
range for the specified restaurant. This approach streamlines the cost of
location selection in the early stages of decision-making, thereby
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mitigating the risk of opening a store in an inappropriate location. future research. Firstly, the analysis only accounts for the distance of
Secondly, the outcomes of this study reveal that the prevalent pat- restaurant nodes on a two-dimensional plane. Subsequent research
terns for the same type of restaurant differ across various districts, of- could extend this to three dimensions to delve deeper into consumption
fering insights into how services can be more effectively designed and behavior. Secondly, the study overlooks the impact of takeaway ser-
marketed. For instance, in the case of a formal dining western restau- vices, which could be an influential factor in store location decisions.
rant, the prevalent patterns in Huli District and Siming District are Future studies might explore the implications of takeaway services on
distinct. If a firm plans to establish a formal dining-Japanese restaurant restaurant locations. Lastly, enhancing the classification granularity of
in Huli District, it might explore joint marketing and promotion op- restaurants could improve the interpretability of algorithm results.
portunities with coffee shops. However, if the firm is considering a Future investigations could leverage text mining and image recognition
similar restaurant in Siming District, it may incorporate BBQ services in to address this aspect.
its offerings and marketing strategies.
Finally, this study highlights the value of information derived from CRediT authorship contribution statement
the restaurant graph structure for both operational and marketing pur-
poses, emphasizing the complementary nature of these two disciplines. Shuihua Han: Resources, Funding acquisition, Conceptualization.
As a result, it suggests that marketing managers should collaborate with Linlin Chen: Writing — original draft, Methodology, Formal analysis,
operations managers in the initial stages of location selection. This Data curation. Zhaopei Su: Writing — original draft, Visualization,
managerial insight extends beyond restaurant location selection and Software, Investigation, Formal analysis. Shivam Gupta: Writing — re-
operations, providing relevant for addressing location issues in various view & editing, Supervision, Project administration. Uthayasankar
industries such as hotels, retail outlets, and others. Sivarajah: Supervision, Resources, Project administration.

5.3. Limitations and future works

This study comes with certain limitations, suggesting avenues for

Appendix A
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Algorithm 1. Dataset partitioning process

1 Input: Dataset D = {cubey,cubes,, ..., cube }, the proportion of training set is p.

2 Initialization:Defining training set as D;, testing set as Do, and candidate neighbor set as Dy
3 cubej«random(D)// Randomly selecting a cube as the beginning cube.

4 D, Dy +cube; // Adding the cube into testing set.

5 While size(D2) < p(1-p) //p is the total number of cubes.

6 D, <D, + neighbor(D,)//Adding all neighbor cubes of testing set into candidate neighbor set.
7 cubey, <random(D,) // Randomly selecting a cube from candidate neighbor set.

8 Dy <D +cubey, // Adding the selected cube into testing set.

9 D, <D —D,//Obtaining the training set

[
=}

output: Training set D; and testing set Dy

Algorithm 2. Obtain the maximal clique

1 Input: Graph G, and point set E(G,) = {O,ma,my, ...,my} //O,my,my, ...,m, are the points in Graph G,.
2 Initialization: Defining maximal clique set Q(G;) = {Qklk € [1,n]}.

3 for k in [1, n] // n is the total number of points in graph G,.

4 Qx.add (O, my) // Adding point O and point my into Q.

5 for j in (k, n]

6 y«<Ture

7 foriin [1, k]

8 if {mk,mj} C Qi //Deleting m; if connection between myandm; has existing in Q;.
9 y<False

10 break

11 ify = False

12 continue

13 @<True

14 for q in E(Qx) //E(Qx) is point set of Q.

15 if gm; = 0 // There is no connection between point g and point m;.

16 @<False //m; is not the point we are searching for.

17 break

18 if ¢ = True //Judging if point m; has relationship with all points in E(Qy).

19 Qx-add (m;) // Adding point m; into Q.

20 output: Q(G,) = {Qklk € [1,n]} // The maximal clique set of Graph G,.

Algorithm 3. Determining the prevalent co-location pattern, named colo_tree()
1 Input: Spatial co-colocation pattern P

Initialization: Prevalent co-location pattern set P Participation threshold PI

While size(P) > 1 // The judging process only continue when there are at least two features.

if pi(P)>PI // Calculating its participation degree and comparing it with participation threshold.
if P not in P

P<P+P// Updating the prevalent co-location pattern set

else

for f in P //Obtaining the subsets of P

sub_P<P

sub_P<sub_P —f //Deleting a feature from P to obtain the subset

self. colo_tree(sub_P) //Embedding the algorithm 3 colo_tree to further judge current subset, //In new cycle, the input is sub_P
output: Q(G;) = {Q«lk € [1,n]} // The maximal clique set of Graph G,
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Appendix B. . Restaurant type hierarchy

H1 H2

Dinner(23 items in total) Eg. Fujian food, Northeast food, BBQ and others

Fast food(24 items in total) Eg. Fujian food, Northeast food, BBQ and others

Snacks(4 items in total) Eg. Pasta, Fried food, Spicy Hot Pot and others

Casual dining(3 items in total) Cafes, drinks, bars

Dessert(1 item in total) Bread dessert
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