ALayxeipLon ALKTUWV
BaclLopevwy oto
NOYLOHLKO
2025 (DIT3006)

Ap. Elpnvn Awwtou

3/4/2025

mailto:eliotou@hua.gr

Chapter 5
Network Layer:
The Control Plane

© All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

Network-layer functions

Recall: two network-layer functions:

= forwarding: move packets
from routers input to data plane
appropriate router output

" routing: determine route
taken by packets from source control plane

to destination

Iwo approaches to structuring network control plane:

" per-router control (traditional)
" |ogically centralized control (software defined networking)

Software defined networking (SDN)

" Internet network layer: historically has been
implemented via distributed, per-router approach
* monolithic router contains switching hardware, runs
proprietary implementation of Internet standard

protocols (IP, RIP, IS-IS, OSPF, BGP) in proprietary
router OS (e.g., Cisco 10S)

* different “middleboxes” for different network layer
functions: firewalls, load balancers, NAT boxes, ..

= ~2005: renewed interest in rethinking network
control plane

Recall: per-router control Elane

Individual routing algorithm components in each and every
router interact with each other in control plane to compute
forwarding tables

control
plane
data
plane

Recall: logically centralized control plane

A distinct (typically remote) controller interacts with local
control agents (CAs) in routers to compute forwarding tables

— Remote Controller —

C

XapokoTrelo MNavetmmoTAHIo — TpARua MNMANpo@opIkiAg Kal TNAEPATIKAG

Software defined networking (SDN)

Why a logically centralized control plane!?

easier network management: avoid router
misconfigurations, greater flexibility of traffic flows

table-based forwarding (recall OpenFlow API)
allows “programming” routers

* distributed “programming” more difficult: compute
tables as result of distributed algorithm (protocol)
implemented in each and every router

* centralized “programming” easier: compute tables
centrally and distribute them

open (non-proprietary) implementation of control
plane

Analogy: mainframe to PC evolution-

Specialized oo |)LL)

Applications — Open Interface

Specialized » JRER |
. or BLELELS Or
r Operating k
System

— Open Interface —

Specialized

Hardware *. Microprocessor
Vertically integrated Horizontal

Closed, proprietary Open interfaces
Slow innovation Rapid innovation
Small industry Huge industry

* Slide courtesy: N. McKeown

Traffic engineering: difficult traditional routing

Q: what if network operator wants u-to-z traffic to flow along
uvwz, X-to-z traffic to flow xwyz?

A: need to define link weights so traffic routing algorithm
computes routes accordingly (or need a new routing algorithm)!

Traffic engineering: difficult

Q: what if network operator wants to split u-to-z traffic
along uvwz and uxyz (load balancing)?
A: can’t do it (or need a new routing algorithm)

Traffic engineering: difficult

Q: what if w wants to route blue and red traffic
differently?

A. can’t do it (with destination-based forwarding, and Link
State, Distance Vector routing)

Software defined networking (SDN)

4. programmable 3. control plane

control - - ‘o Coamamte) functions
applications ; external to data-
— Remote Controller —

plane switches

J
A
.
| plane

2. control,
data plane
separation

1: generalized” flow-
based” forwarding
(e.g., OpenFlow)

XapokoTrelo Mavetmothuio — TuApa MANPo@opIKAG Kal TNAEUATIKAG

SDN perspective: data plane switches

Data plane switches

= fast, simple, commodity
switches implementing
generalized data-plane
forwarding (Section 4.4) in
hardware

= switch flow table computed,
installed by controller

= API for table-based switch
control (e.g., OpenFlow)

e defines what is controllable and

what is not T
i} L
protocol for communicating <, s
with controller (e.g., OpenFlow) 8"‘ = plane
= = 1

SDN-controlled switches

SDN perspective: SDN controller

SDN controller (network OS):

" maintain network state
information

" interacts with network
control applications “above”

via northbound APl oo el e,
" interacts with network
switches “below” via SDN Controller
southbound API E (network operating system)
* implemented as distributed
system for performance, southbound API
scalability, fault-tolerance, T
robustness data

SDN perspective: control applications

network-control apps:

“brains” of control:
implement control functions
using lower-level services, API
provided by SDN controller

unbundled: can be provided by
3rd party: distinct from routing
vendor, or SDN controller

Apps can express their
requirements, constraints and
intents without being affected
and constrained by the
complexities of the underlying
network

network-control applications

control
plane

data
plane

Components of SDN controller

Interface layer to
network control

apps: abstractions
API

Network-wide state
management layer:
state of networks
links, switches,
services: a distributed
database
(countersé&tables)

Communication
layer: communicate
between SDN
controller and
controlled switches

SDN
controller

XapokoéTtreio MNavetmoTtpio — TuRpa MANpo@opIikAg Kal TNAEPATIKAS

OpenFlow protocol

" operates between
OpenFlow Controller controller, switch

c 5 " TCP used to exchange
- OpenFlow
- messages
* optional encryption
= three classes of
OpenFlow messages:
e controller-to-switch

* asynchronous (switch
to controller)

* symmetric (misc)

OpenFlow: controller-to-switch messages

Key controller-to-switch messages

" configuration: controller
queries/sets switch configuration
parameters

" modify-state: add, delete, modify
flow entries in the OpenFlow
tables

" features read-state: controller
queries switch features/statistics,
switch replies

" packet-out: controller can send
this packet out of specific switch
port

8nFIow Controller

OpenFlow

-

O
I

/

OEen Flow: switch-to-controller messages

Key switch-to-controller messages
| & OpenFlow

" packet-in: transfer packet (and its
control) to controller. See packet- -
out message from controller

= flow-removed: flow table entry
deleted at switch (e.g. expired)

" port status: inform controller of a
change on a port

OggnFIow Controller

Fortunately, network operators don’t “program” switches by
creating/sending OpenFlow messages directly. Instead use
higher-level abstraction at controller

SDN: control/data plane interaction example

Dijkstra’s link-state @ S|, experiencing link failure
Routing using OpenFlow port status
——————— ?D—— - —%3— - message to notify controller
network RESTful :)
graph AP| J intent J @ SDN controller receives
OpenFlow message, updates
- link status info
statistics I flow tablesJ

v @ Dijkstra’s routing algorithm
Link-state nfoJ host info J switch infoJ application has previously

registered to be called when

2
ever link status changes. It is
OpenFlow SNMP J called.

@ Dijkstra’s routing algorithm
access network graph info, link
state info in controller,
computes new routes

SDN: control/data plane interaction example

@ link state routing app interacts
with flow-table-computation
component in SDN controller,
which computes new flow
tables needed

Controller uses OpenFlow to
install new tables in switches
that need updating

XapokoTrelo Mavetmiothuio — TuApa MNMANPo@opIkAG Kal TNAEUATIKAG

OEenDay_Iight (ODL) controller

Traffic
Engineering

N(_?tWOYk Basic Network Service Functions
service apps

topology switch stats
£ACcess manager manager manager
Control

forwarding host
manager manager
Service Abstraction Layer (SAL) |
OpenFlow 1.0 Bl SNMP B ovspB

ODL Lithium
controller

network apps may
be contained within,
or be external to
SDN controller

Service Abstraction
Layer: interconnects
internal, external
applications and
services

ONOS controller

Network
control apps

REST API Intent

devices links statistics

device | link host flow packet

OpenFIow Netconf OVSDB

control apps
separate from
controller

intent framework:
high-level
specification of
service: what rather
than how

considerable
emphasis on
distributed core:
service reliability,
replication
performance scaling

XapokoTrelo Mavetmothuio — TuApa MANPo@opIKAG Kal TNAEUATIKAG

Various Controllers

- S

- S

Name Language Original Developers | Description
Ovs C Stanford/Nicira A reference controller. Act as a learning switch
NOX C++ Nicira The first OpenFlow controller

r & N N N § §F §F §F §F F §F F §F §F 8§ §F 8 8§ § § § § § 8§ & 8§ 8§ § 8§ §F 8§ 8 N)}

: POX Python Nicira Open source SDN controller
Beacon Java Stanford A cross platform, modular OpenFlow controller
Maestro Java Rice Network operating system
Trema Ruby, C NEC A framework for developing OpenFlow controller
Floodlight Java BigSwitch OpenFlow controller that work with physical and

virtual OpenFlow switches

Flowvisor (& Stanford/Nicira Special purpose controller

P Py ——

: Ryu Python

e ————] ————— -
OpenDayLight| Java

Software Defined Networking (SDN) Made Simple by Vipin Gupta, Linux & Cloud Engineer, Udemy

https://www.udemy.com/course-dashboard-redirect/?course_id=1799014

	Slide 1: Διαχείριση Δικτύων Βασισμένων στο Λογισμικό 2025 (DIT306)
	Slide 2
	Slide 3: Network-layer functions
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Analogy: mainframe to PC evolution*
	Slide 9: Traffic engineering: difficult traditional routing
	Slide 10: Traffic engineering: difficult
	Slide 11: Traffic engineering: difficult
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: OpenFlow protocol
	Slide 18: OpenFlow: controller-to-switch messages
	Slide 19: OpenFlow: switch-to-controller messages
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

