TexvoAoyileg ALadLKTUOU
2025-26 (DIT 315)

Ap. Elpivn Awwtou

7/10/2025

mailto:eliotou@hua.gr

AwopBpwon pobnuatoc

e AlaAE€elc:

> Oswpla
» Knowledge checks

> Interactive exercises

AwapBpwon pabnuotoc

e TeAwkn e€€taon:
» Quiz 20 epwtriocswv (70%)

» Epyaoia mapouociaonc epeuvnTIKWV epyacilwV oto state of the art twv
Texvoloywwv Atadiktoou (30%) = obnyisc o€ Esxwptoto pdf

» Tooooto enutuyiag: > 80%
» M.O.~7.0-7.5
» 'YAn & MNAdvo eéetdoswv

o Kupiwg ouyypappo:

» KUROSE & ROSS, «Awktuwon YrnoAoylotwv: MNpooéyylon amo MNavw mpog
T Katw», 8n €kdoon, Ekdooelg Nkiovpdac (Kepdlata 2, 6)

» KUROSE & ROSS, «Awktuwon YrnoAoylotwv: MNpooéyylon amnod MNavw mpocg
o Katw», 7n €kdoon, Ekdooelc Nkiovpdac (Kepdalata 9)

>

https://gaia.cs.umass.edu/kurose_ross/index.php
https://gaia.cs.umass.edu/kurose_ross/index.php

2xedlaypappa padnuartog (draft)
I Ty prevery

Elcaywyr) ota Siktua UTTOAOYLoTWV Kal To Stadiktuo: Emimeda MpwTokOA WY, eVvBUAAKwon

7/10
Emimedo edpappoync: Apxeg SIKTUAKWY ePAPLOYWY, APXLTEKTOVLIKI web
Emimedo epappoyng: mpwtokola HTTP, FTP, web caching, cookies 14/10
Emimedo epappoyng: HAektpovikd taxudpopeio (SMTP, POP3, IMAP), utinpeoia kataAdyou 21110
Stadiktvou (DNS)
Emimedo epappoyne: P2P Siapolpacpdc apyeiwv, Atavour apxeiwv, Bivteo ouvexolg pong Kat 411

DASH, Netflix, YouTube
Emimedo edappoyng: Mpoypappatiopnog socket 18/11
AkTUWon MOAUREOWV: ALKTUAKECG edappoyEG TToAupéowv, UDP cuveyolg pong, HTTP

; . . 25/11
ouvexoul¢ pong, Voice over IP
Awktvwon MoAupéowv: SIP, RTP TTpwtokoAAa, TTOAATTAEG KAAOELG UTTNPECLOC, EVOTTOLNIEVEG
kat Stadoporioinuéveg utinpeoieg (Diffserv,IntServ), Mowdtnta umnpeoiag (Quality of Service - 2/12
QoS), pwtdkoAo Séopeuong Topwv (RSVP)

H Twn piog totooelidoag (mpwtokoAa otnv «mpdén»), Wireshark 9/12
EmavaAnyn 16/12

“ Mapouciaon epyacwwv dottntwy 1/3 6/1
- Mapoucioon epyaciwv dottntwy 2/3 13/1
“ MNapoucioaon epyaciwy dortntwy 3/3 — av xpelaotel 20/1

XapokoTrelo Mavetmothuio — TuApa MANPo@opIKAG Kal TNAEUATIKAG

’

Protocol “layers’

Networks are complex,
with many “pieces ™

" hosts

" routers

" |inks of various
media

= applications
" protocols

= hardware,
software

Question:

is there any hope of
organizing structure of
network?

.... or at least our
discussion of networks!?

Organization of air travel

ticket (purchase) ticket (complain)
baggage (check) baggage (claim)
gates (load) gates (unload)
runway takeoff runway landing
airplane routing airplane routing

airplane routing

" a series of steps

>

Layering of airline functionalitx

————

ticket (purchase) ticket (complain) ticket
baggage (check) baggage (claim baggage
gates (load) gates (unload) gate
runway (takeoff) runway (land) takeoff/landing
airplane routing airplane routing airplane routing airplane routing airplane routing
departure intermediate air-traffic arrival
airport control centers airport

layers: each layer implements a service
" via its own internal-layer actions
" relying on services provided by layer below

Why layering?

dealing with complex systems:

= explicit structure allows identification,
relationship of complex system’ s pieces

* layered reference model for discussion
" modularization eases maintenance, updating of
system

e change of implementation of layer’ s service
transparent to rest of system

* e.g., change in gate procedure doesn’t affect rest of
system

Internet protocol stack

" agpplication: supporting network
applications

* FTP, SMTP, HTTP
" transport: process-process data
transfer
 TCP, UDP
" network: routing of datagrams from
source to destination
* |P, routing protocols
" [ink: data transfer between
neighboring network elements
» Ethernet, 802.111 (WiFi), PPP

= physical: bits “on the wire”

application

transport

network

link

physical

ISO/OSI reference model

= presentation: allow applications

to interpret .meaning of da.ta, application
e.g., encryption, compression, _—
machine-specific conventions presentation
= session: synchronization, session
checkpointing, recovery of data transport
exchange
“ .. network
" Internet stack “missing these _
layers! Why? data link
* these services, if needed, must be physical

implemented in application

e End User layer
e HTTP, FTP, IRC, SSH, DNS

e Syntax layer
e SSL, SSH, IMAP, FTP, MPEG, JPEG

e Synch & send to port
e API’s, Sockets, WinSock

e End-to-end connections
e TCP, UDP

Packets
IP, ICMP, IPSec, IGMP

Frames
Ethernet, PPP, Switch, Bridge

Physical structure

PhYS|Ca| Coax, Fiber, Wireless, Hubs, Repeaters

Encapsulation

message | M appli¢ation
segment [H/| M tran*port \
datagram [H,| H] M netyork
frame [H/|H,| H{ M link hadl
phy:'sical
link
physical C_?
switch
destination Ho H| M network
M pplication | Fnl Py M link M| M
Hi| M transport \ physical
Hol Hi| M network Q
HyHy By M ink V router
physical

Chapter 2

. . ATOP-DOWN APPROACH
Application Layer

KUROSE * ROSS

A note on the use of these Powerpoint slides:

We' re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.

They obviously represent a /ot of work on our part. In return for use, we only

ask the following: Computer

= If you use these slides (e.g., in a class) that you mention their source

(after all, we’ d like people to use our book!) Ne tworklng-. A Top

= |f you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this DO Wn Approa Ch

material. o
7th edition
Thanks and enjoy! JFK/IKWR Jim KUI’OSG, Keith Ross
: . Pearson/Addison Wesley
(© All material copyright 1996-2016 April 2016

J.F Kurose and K.W. Ross, All Rights Reserved

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 electronic mail
« SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and
content distribution
networks

2.7 socket programming
with UDP and TCP

Chapter 2: application layer

our goals: = |earn about protocols by
" conceptual, examining popular
implementation aspects application-level
of network application protocols
protocols « HTTP
* transport-layer * FTP
service models « SMTP/POP3 /IMAP
: DNS
* client-server .
paradigm : crea.tlng: network
applications
* peer-to-peer
Paradigm e socket API

* content distribution
networks

Some network apps

" e-mail

= web

" text messaging
" remote login

= P2P file sharing

" multi-user network
games

" streaming stored
video (YouTube, Hulu,
Netflix)

voice over |IP (e.g.,

Skype)
real-time video
conferencing

social networking
search

Creating a network app

write programs that:
" run on (different) end systems
" communicate over network

" e.g., web server software
communicates with browser
software

transport

network
data link

physical

no need to write software

network

for network-core devices Y data nk

physical

" network-core devices do not
run user applications

= applications on end systems
allow for rapid app
development, propagation

Application architectures

possible structure of applications:
= client-server
= peer-to-peer (P2P)

Client-server architecture

server.

" always-on host

= permanent IP address
= data centers for scaling

clients:
= communicate with server

" may be intermittently
connected

" may have dynamic IP
addresses

" do not communicate directly
with each other

P2P architecture

g

" no always-on server

= arbitrary end systems
directly communicate

" peers request service from
other peers, provide service
in return to other peers

* self scalability — new
peers bring new service
capacity, as well as new
service demands

" peers are intermittently
connected and change IP
addresses

* complex management

> peer-peer

Processes communicating

process: program running - clients, servers
within a host client process: process that
= within same host, two initiates communication

processes communicate
using inter-process

communication (defined by
O5)

server process: process that
waits to be contacted

= processes in different hosts
communicate by exchanging = aside: applications with P2P

MESSages architectures have client
processes & server
processes

Sockets

" process sends/receives messages to/from its socket
" socket analogous to door

sending process shoves message out door

sending process relies on transport infrastructure on
other side of door to deliver message to socket at
receiving process

application application

controlled by
app developer

socket
\

controlled

by O
'\

Internet

A
v

Addressing processes

= to receive messages, a

process must have identifier

host device has unique 32-
bit IP address

" (. does IP address of host

on which process runs
suffice for identifying the
process!
= A: no, many processes
can be running on same
host

identifier includes both IP
address and port numbers
associated with process on
host.

example port numbers:
e HTTP server: 80
* mail server: 25

to send HT TP message to
gaia.cs.umass.edu web
server:

* [P address: 128.119.245.12
* port number: 80

Port versus socket

Port Socket
Port specifies a number that is used A socket is a combination of IP
by a program in a computer. address and port number.
A program running on different
computers can use It identifies a computer as well
the same port number, as a program within the
Hence port numbers can’t be used computer uniquely.

to identify a computer uniquely.

Sockets are involved in the

Port number is used in the application layer.
transport layer. A socket is an inferface between

the transport and application layer.

A server and a client uses a socket
to keep an eve on the
data request and responses.

Port uses a socket to drop the data to
a correct application.

XapokoTrelo MNavetmoTApio — TuAua NMANPo@opIkAg Kal TNAEPATIKAG

VWVhat transport service does an app heed?

data integrity throughput
" some apps (e.g., file transfer, = some apps (e.g.,
web transactions) require multimedia) require
100% reliable data transfer minimum amount of
" other apps (e.g., audio) can "c‘hroughpL’l’t to be
effective

tolerate some loss
= other apps (elastic apps)

make use of whatever

= some apps (e.g., Internet throughput they get
telephony, interactive security

games) require low delay
to be “effective”

timing

" encryption, data integrity,
authentication...

Transeort service reguirements: common apps

application data loss throughput time sensitive
file transfer | no loss elastic no
e-mail | no loss elastic no
Web documents | no loss elastic no
real-time audio/video | loss-tolerant| audio: 5kbps-1Mbps yes, 100’ s

video:10kbps-5Mbps

msecC

stored audio/video

loss-tolerant

same as above

interactive games | loss-tolerant| few kbps up yes, few secs
text messaging | no loss elastic yes, 100’ s
msec

yes and no

Internet transport protocols services

A

TCP service:

reliable transport between
sending and receiving
process

flow control: sender won’ t
overwhelm receiver

congestion control: throttle
sender when network
overloaded

does not provide: timing,
minimum throughput
guarantee, security

connection-oriented: setup
required between client and
server processes

UDP service:

" unreliable data transfer
between sending and
receiving process

= does not provide: reliability,
flow control, congestion
control, timing,
throughput guarantee,
security, or connection
setup,

Q: why bother? Why is
there a UDP?

Internet apps: aEEIication, transport Erotocols

application

underlying

application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia HTTP (e.g., YouTube), TCP or UDP
RTP [RFC 1889]
Internet telephony SIP, RTP, proprietary
(e.g., Skype) TCP or UDP

Securing TCP

TCP & UDP

" no encryption

" cleartext passwds sent into
socket traverse Internet in
cleartext

SSL

" provides encrypted TCP
connection

" data integrity

" end-point authentication

SSL is at app layer
= apps use SSL libraries, that
“talk” to TCP

SSL socket API

" cleartext passwords sent
into socket traverse
Internet encrypted

= Now TLS

App-layer protocol defines

types of messages
exchanged,

* e.g., request, response
message syntax:

* what fields in messages
& how fields are
delineated

message semantics

* meaning of information
in fields

rules for when and how
processes send & respond
to messages

open protocols:

* defined in RFCs

= allows for interoperability
= e.g, HTTP, SMTP
proprietary protocols:

" e.g., Skype, Zoom

THANK YOU!

	Slide 1: Τεχνολογίες Διαδικτύου 2025-26 (DIT 315)
	Slide 2: Διάρθρωση μαθήματος
	Slide 3: Διάρθρωση μαθήματος
	Slide 4: Σχεδιάγραμμα μαθήματος (draft)
	Slide 5: Protocol “layers”
	Slide 6: Organization of air travel
	Slide 7: Layering of airline functionality
	Slide 8: Why layering?
	Slide 9: Internet protocol stack
	Slide 10: ISO/OSI reference model
	Slide 11
	Slide 12: Encapsulation
	Slide 13
	Slide 14: Chapter 2: outline
	Slide 15: Chapter 2: application layer
	Slide 16: Some network apps
	Slide 17: Creating a network app
	Slide 18: Application architectures
	Slide 19: Client-server architecture
	Slide 20: P2P architecture
	Slide 21: Processes communicating
	Slide 22: Sockets
	Slide 23: Addressing processes
	Slide 24: Port versus socket
	Slide 25: What transport service does an app need?
	Slide 26: Transport service requirements: common apps
	Slide 27: Internet transport protocols services
	Slide 28: Internet apps: application, transport protocols
	Slide 29: Securing TCP
	Slide 30: App-layer protocol defines
	Slide 31: Thank you!

