TexvoAoyileg ALadLKTUOU
2025-26 (DIT 315)

Ap. Elpnvn Awwtou

18/11/2025

mailto:eliotou@hua.gr

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 electronic mail
e SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and
content distribution
networks

2.7 socket programming
with UDP and TCP

Pure P2P architecture

" no always-on server

= arbitrary end systems
directly communicate

" peers are intermittently
connected and change
IP addresses

examples:

e file distribution
(BitTorrent)

* Streaming (KanKan)

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers!?

* peer upload/download capacity is limited resource

u: server upload
capacity

d;: peer i download
capacity

d;
network (with abundant =D
=g

bandwidth) u,-\

u;: peer i upload
capacity

XapokoTrelo Mavetmothuio — TuApa MANPo@opIKAG Kal TNAEUATIKAG

File distribution time: client-server

® server transmission: must
sequentially send (upload) N E
file copies:

* time to send one copy: Flu, ,
* time to send N copies: NF/u, g

= client: each client must
download file copy
e d

- = min client download rate
* client download time: F/d ..

time to distribute F

toNclientsusing [> max{NF/u F/d.. . n}
: c-s = S,’ mi
client-server approach /

/

increases linearly in N

File distribution time: P2P

® server transmission: must
upload at least one copy

* time to send one copy: F/u,

= client: each client must
download file copy

e client download time: F/d

= clients: as aggregate must download NF bits

* max upload rate (limiting max download rate) is u, + 2u,

time to distribute F
to N clients using Dp, > max{F/u,,F/d. ;. ,NF/(u, + 2u,)}
P2P approach ’ /

/
increases linearly in N ... /
... but so does this, as each peer brings service capacity

Client-server vs. P2P: example

client upload rate = u, F/u=1 hour, u,=10u, d, .,z u

Minimum Distribution Time

3.5

3

2.5

2

1.5

1

0.5

= P2P

-o— Client-Server

35

S

P2P file distribution: BitTorrent

= file divided into 256KByte chunks
= peers in torrent send/receive file chunks

tracker: tracks peers torrent: group of peers
participating in torrent exchanging chunks of a file

E

Alice arrives ...
... Obtains list
of peers from tracker q
... and begins exchanging ==

‘\g

file chunks with peers in torrent | V{A/'
3

N

»
»

P2P file distribution: BitTorrent

" peer joining torrent:
* has no chunks, but will

accumulate them over time
from other peers

* registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

* while downloading, peer uploads chunks to other peers
" peer may change peers with whom it exchanges chunks
= churn: peers may come and go

= once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

BitTorrent: requesting, sending file chunks

requesting chunks:

" at any given time, different
peers have different subsets
of file chunks

= periodically, Alice asks each
peer for list of chunks that
they have

= Alice requests missing
chunks from peers, rarest
first

sending chunks: tit-for-tat

Alice sends chunks to those
four peers currently sending her
chunks at highest rate

* other peers are choked by Alice
(do not receive chunks from her)

* re-evaluate top 4 every 10 secs

every 30 secs: randomly select
another peer, starts sending
chunks
 “optimistically unchoke” this peer
* newly chosen peer may join top 4

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’ s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’ s top-four providers

| b higher upload rate: find better
q trading partners, get file faster !

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 electronic mail
e SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and
content distribution
networks

2.7 socket programming
with UDP and TCP

Video Streaming and CDNs: context

» video traffic.: major consumer of Internet bandwidth

* Netflix, YouTube: 37%, 16% of downstream
residential ISP traffic

« ~1B YouTube users, ~75M Netflix users Youtliil:
*= challenge: scale - how to reach ~1B

users? NETELIX

* single mega-video server won't work (why?)

= challenge: heterogeneity
= different users have different capabilities (e.g.,

wired versus mobile; bandwidth rich versus U HEES
bandwidth poor) — RmEBBER

» solution: distributed, application-level
infrastructure

Streaming stored video:

simple scenario:

video server

client
(stored video)

Main challenges:

* server-to-client bandwidth will vary over time, with changing

network congestion levels (in house, access network, network
core, video server)

* packet loss, delay due to congestion will delay playout, or result in
poor video quality

XapokoTrelo MNavetmoTApio — TuAua NMANPo@opIkAg Kal TNAEPATIKAG

HTTP Adaptive Streaming (HAS)

Comparison of HTTP video streaming and HT TP adaptive video streaming

Video
Service
(Servers,
Content
Delivery Network)

Segment

Transport Requests Q: Why IS
Network . this better?
(Internet, File Segment

Access Network) Download Downloads

Measurements

> B B
End User Initial Stalling Quality
Adaptation

Delay

HTTP Video Streaming HTTP Adaptive Video Streaming

Streaming multimedia: DASH

= DASH: Dynamic, Adaptive Streaming over HTTP @,;
" server: @'—

* divides video file into multiple chunks \/:/E
* each chunk encoded at multiple different rates
* different rate encodings stored in different f||es n
& é??f“'_“-,;/ client

* files replicated in various CDN nodes
* manifest file: provides URLs for different chunks

= client:
* periodically measures server-to-client bandwidth
 consulting manifest, requests one chunk at a time

* chooses maximum coding rate sustainable given current
bandwidth

* can choose different coding rates at different points in time
(depending on available bandwidth at time)

DASH example

5 segments, 3 frames each

vl
=
=
=
E =
(= 2
: -t
o,
A e
J Based on how fast the
current (and previous)
HTTP segments are
: downloaded, the bit
: rate of the next
v : segment is selected
I
|

LY
4

&

* M. Seufert, S. Egger, M.Slanina, T. Zinner, T. Hof¥feld, and P. Tran-Gia, “Survey on Quality of Experience of HTTP Adaptive Streaming”, IEEE Communication Surveys &
Tutorials, Vol. 17, No. 1, 2015.

XapokoTrelo Mavetmothuio — TuApa MANPo@opIKAG Kal TNAEUATIKAG

Streaming multimedia: DASH

* DASH: Dynamic, Adaptive
Streaming over HTTP

" “intelligence” at client: client
determines

* when to request chunk (so that buffer
starvation, or overflow does not
occur)

* what encoding rate to request (higher
quality when more bandwidth
available)

* where to request chunk (can request
from URL server that is “close” to

client or has high available
bandwidth)

Streaming video = encoding + DASH + playout buffering

HTTP Adaptive Streaming (HAS)

2 - measuremsant
fitting according to 1QX
45 f{t)=ce exp(B 1)+ I

QoE
= 0.003 x 0064t 4 2 498

MOS f ()

t = time on highest layer

100 a0 80 70 60 50 40 30
time t on highest quality level (%)

Adaptation frequency (number of switches), adaptation
amplitude, adaptation direction, segment length, buffer
size, etc.

13
et

|-
video_360_
27.m4s

"
"
e
video 480 _
17.m4s

video_480_

51.mds

-

video_720_

7.mas

41.m4s

Chunks

1 e LR v
" d » -
m w " -

e | e i
video_360_ video_360_ wvideo_360_ wvideo_360_
11.mas 12,mas 13.mas 14.mas
1 b 1 A2 L) - L) -

" " - -

o -8 | - | 4
video 360 video 360 video_360_ video 360_
28.mAas 29.mds 30.mds 31.mds
1 - 1 LF 1 - . .

" " " -

3 X S %
video 360 video_360_ video_260_ video_360
45.m4as 46.m4s 47.m4s 48.m4s
T L . Lo
B! Y % E
video 480 video 480 video 480 videp 480
1.mds 2.mds 3.mds 4.mds
i R aa fo
i e e e
video 480 video 480 video 480 videp 480 _
18.mds 19.mds 20.m4s 21.més
L w0 %) %)

m w ”» "

1" we we | wie
video_480_ video_480_ video_480_ video_480_

36.m4s 37.mds 38.més

35.mds

- . -

1

=
5
e

video_480_ video_480_
53.mds S4.mds

s
o
a
<
&
=

o
o
3
S
o

52.mds

[}

F;

video_720_
9.mds

video_720_ video_720_

8,mas 10.mds 11,mds

"

|' fa " -
m w Ll
e - e
video_720_ video_720_ wvideo_720_ video_720_
25.mas 26,m4s 27.mds
TYTE - o L
hed
"
"
video 720 video 720_
43.m4s 44.m4s

e LR N [

|?

~
=
3
Za
-

4

E!_."-

E
§3°°

video 720
42.m4s

o5
w
|52
B

-
e -
video_720_

s e e T«no

vldeo__‘lzo_

0 v A

video_720_

rarh Vo A

[¥
"
™
L
video_360_
15.m4s

32.més

22.mds

video_720_
12.m4s

-

video_720_
29.m4s

1

video 720_
46.m4s

1

"

"
(Rl

video_

ARDE 3 s R

' S
"

™
e

video_360_
16.mAs
LI
"
"
L haed)
video 380 _
33,més

(I
“w
L
L

video_360_
50.m4s

6.mds

23.mds

40,mds

13.mds

video_720_
30,mds
@ O

"
videa_720_
47.m4s

video_

ANROR S wm A

video_360_
51.mds

In

»
»
e |
video 480
7.mAs

[x &
»
we |
video_480_
24.mds

1 -

-

w

wie
video_480_
41.m4s
|0 ‘&

Al

"

e
video 480
SB.mds
‘; N

"

e
video_720_
14.mds

video_720_
31.mds
S
"
wis
video_720_
48.m4s

[s &

video_

ANOR A m A

e
"

"
1o

video_360_
19.m4s

1

A

video_360
36,mds

20.m4s

37.m4s

54.m4s

video 480 _
10.mds
A
-

"
video_ 480 _
27.m4ds
. o

"
"

"
video 480_
44,mds

17.més

video_720_
34.mds

1 5
"

"
| 1
L=

video 720_

video_360_
21.mas

video 360_
38.mds

video 260
55.mds

i

video_480_
11.mds

§¥-

video_480_
28.mds

video_720_
18, mas

52.m4s

vid

video_360

video_260

video_480

video_480_

video_480_
46.mds

"

i

video_720_

video_720_
19.mds
L

-
-l

video_720_
36.mds
'- -
wl
e 1
video 720_
53.m4s

video_

AROMR B mn A

ﬂé
58
&g

<
nE
'31;
#Io

]

&
S

D -
L 3
9 2!

<
w S
=)
31
i

[}

s
b=t
S
31
&g
"

)

video_720_

w
3
>

i}

Es:

&
»
o

] |E
3

~

',O

g4

s

-8
3[?
~
N
=]

w
~
31
=
=

4

video_720_
54.més

&
|y
video _

LH/0Nn 4N

25.mAas

"
"
|

video_360_

59.mas

video_480_

32.m4s

22.mds

39.mds

videa_720_

56.m4s

1 S

"

m
.

video_

SR A=

w
e
video_360_
26.mas

»
"
we |
video 360 _
43.m4ds

”
-
“e

video_720_
6.mAs

1‘ -

"

e
video_720_
20.mds
I‘ -

"
-
video_7120_
40.mas
|- -

nl
wie

video_720_
57.m4s
L
»
n
wis
video_

anon e

Manifest file

Activities [Text Editor ~ Thu 06:16 @

o) manifest.mpd

Open~

1<?xml version="1.0"7>
2 <!-- MPD file Generated with GPAC version ©.5.2-DEV-revVersion: 0.5.2-426-
gcSad4e4+dfsg5-3ubuntu®.1 at 2021-01-05T10:44:13.636Z-->
. 3 <MPD xmlns="urn:mpeg:dash:schema:mpd:2011" minBufferTime="PT1.5005"
type="static" mediaPresentationDuration="PTOH10M34.6255"
maxSegmentDuration="PTOHOM5.0005" profiles="urn:mpeg:dash:profile:full:2011"=
é 4 <=ProgramInformation moreInformationURL="http://gpac.sourceforge.net">
5 <Title>manifest.mpd generated by GPAC</Title=>
6 </ProgramInformation=
— 7
U=Rl 8 <Period duration="PTeH10M34.6255">
- 9 <AdaptationSet segmentAlignment="true" bitstreamSwitching="true"
maxWidth="1920" maxHeight="1080" maxFrameRate="24" par="16:9" lang="und"=

PR 10 <SegmentList>
= 11 <Initialization sourceURL="manifest setl init.mp4"/=
12 <[SegmentlList=
144 <Representation id="2" mimeType="video/mp4" codecs="avc3.a64001f"
width="1280" height="728" frameRate="24" sar="1:1" startWithSAP="1"
bandwidth="1981800">
145 <SegmentlList timescale="12288" duration="61440">
146 <SegmentURL media="video 720 1.m4s" />
147 =SegmentURL media="video 720 2.m4s" /=
148 =SegmentURL media="video 720 3.m4s" /=
149 <SegmentURL media="video 720 4.m4s" /=
150 <SegmentURL media="video 720 5.m4s" />
151 =SegmentURL media="video 720 6.m4s" /=
see 152 =SegmentURL media="video 720 7.m4s" /=
L] — — — r
LN N

XML ¥ TabWidth:8 = Ln1, Col1 ~ IN5

QASH example: LTE

(0): Video encoded at multiple bit rates and split into temporal segments
(1)-(2): UE makes an HTTP video request via the eNB to the video server/ MEC
(3)-(4): Manifest file sent back to the UE with the description and URLs of all available
quality representations
(5) UE runs its HAS selection strategy
(6)-(7): UE requests the next segment to download via the eNB
(8): The selected segment is sent to the eNB via the backhaul link
(9): The eNB progressively sends the selected content via downlink radio scheduling

(10): The UE buffer is progressively filled and video playout starts

Video bit rate
0)

Il

[] UEn buffer

N\

Video origin server / Time
HTTP cache server

Content distribution networks

= challenge: how to stream content (selected from
millions of videos) to hundreds of thousands of
simultaneous users!?

= option [: single, large “mega-server”
* single point of failure
* point of network congestion
* long path to distant clients
* multiple copies of video sent over outgoing link

....quite simply: this solution doesn’t scale

Content distribution networks

= challenge: how to stream content (selected from
millions of videos) to hundreds of thousands of
simultaneous users!?

= option 2: store/serve multiple copies of videos at
multiple geographically distributed sites (CDN)
* enter deep: push CDN servers deep into many access
networks (edge)
* close to users (f’-\
* used by Akamai, 1700 locations

* bring home: smaller number (10’s) of larger clusters in
POPs near (but not within) access networks

« used by Limelight t] Limel ight

NETWORKS

Content Distribution Networks (CDNs)

= CDN: stores copies of content at CDN nodes
* e.g. Netflix stores copies of MadMen
= subscriber requests content from CDN

* directed to nearby copy, retrieves content
* may choose different copy if network path congested

XapokoTrelo MNavetmoTApio — TuAua NMANPo@opIkAg Kal TNAEPATIKAG

CDN content access: a closer look

Bob (client) requests video http://video.netcinema.com/6Y7B23V
= video stored in CDN at http://KingCDN.com/NetCéy&B23V

h ! 2. resolve http://video.netcinema.com/6Y7B23V
II W Bob’s local DNS

6. request video from ’J\ \ Bob's
KINGCDN server, | local DNS
streamedvia HTTP == | | server
urns URL

tC6y&B23V

‘.:" "I,
oy &

.55,:1

1. Bob gets URL for video
http://lvideo.netcinema.com/6Y7B23V

from netcinema.com web page

48&5. Resolve
http://KingCDN.com/NetC6y&B23
via KingCDN’s authoritative DNS,

) returns IP address of KingCDN
with video

3. netcinema’s DN§

netcl http://KingCDN.co

distribution server

Xapokoétrelo MNMavemoTAuio — TuApa NMAnpo@op a1 TNAgPATIKAG

Content Distribution Networks (CDNs)
“over the top” R

g F pF , f

Internet host-host communication as a service

OTT challenges: coping with a congested Internet
* from which CDN node to retrieve content?
* viewer behavior in presence of congestion?
* what content to place in which CDN node!?

Content distribution networks

* The CDN must intercept the request so that it can:

e Determine a suitable CDN server cluster for that
client at that time, and

* Redirect the client’s request to a server in that cluster

" Cluster selection strategy is a mechanism for dynamically

directing clients to a server cluster / data center within
the CDN

* CDN learns the IP address of the client’s LDNS server
via the client’s DNS lookup. After learning this IP
address, the CDN needs to select an appropriate
cluster based on this IP address

* CDNs generally employ proprietary cluster selection
strategies (geographically closest / real-time
measurements-based / etc.)

Case study: Netflix

Netflix video distribution has two major components: the Amazon
cloud and its own private CDN infrastructure.

Content ingestion. Before Netflix can distribute a movie to its
customers, it must first ingest and process the movie

Content processing. The machines in the Amazon cloud create
many different formats for each movie, suitable for a diverse array of
client video players running on desktop computers, smartphones, and
game consoles connected to televisions

Uploading versions to its CDN. Once all of the versions of a
movie have been created, the hosts in the Amazon cloud upload the
versions to its CDN.

Case study: Netflix

copies of
versions of
CDN servers

Netflix registration,

accounting servers 3. Manifest file

2. Bob browses| | returned for
Netflix video @@ equested video

1. Bob manages

Netflix account A

%" 4.DASH
Ckd streaming
55

XapokoTrelo Mavetmothuio — TuApa MANPo@opIKAG Kal TNAEUATIKAG

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 electronic mail
e SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and
content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-31

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-
end-transport protocol

application

socket \

application

controlled by
app developer

controlled
by OS

o

Application Layer 2-32

Internet

A
v

e © ..

- -'__I 7/. _application
@ transport

________ f

de-multiplexing

NETFLIX

- __L A -applcation
O transport

multiplexing

Multiplexing/demultiplexing

— multiplexing as sender: - demultiplexing as receiver: —
handle data from multiple use header info to deliver
sockets, add transport header received segments to correct
(later used for demultiplexing) socket

application

application

application |:| socket
O process

O —

netwerk trarjgport

E I net\york
physigal \
Iimk \' \

How demultiplexing Works

= host receives IP datagrams

* each datagram has source IP
address, destination IP address

* each datagram carries one
transport-layer segment

* each segment has source,
destination port number
" host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port dest port #

other header fields

application
data

(payload)

TCP/UDP segment format

Connection-oriented demultiplexing

= TCP socket identified by = server may support many
4-tuple: simultaneous TCP sockets:
 source IP address * each socket identified by its
* source port number own 4-tuple
e dest IP address * each socket associated with
. dest port number a different connecting client

= demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

Connection-oriented demultiplexing: example

APACHE

/ HTTP SERVER

application

g
g

host: IP
address A

source IP,port: B,80
dest IP,port: A,9157

source IP,poge=r5s
dest IPfport: B,80

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

network
E link
server: I[P physical
address B

source P pore.
dest IR, port: B,80

cb

sourc
dest

application

fra nsporff

19

/75

I :

e _LRrpen 157
P port: B,80

C

host: IP
address
C

Socket programming

Two socket types for two transport services:
UDP: unreliable datagram
TCP: reliable, byte stream-oriented

Application Example:

.. client reads a line of characters (data) from its
keyboard and sends data to server

2. server receives the data and converts characters
to uppercase

3. server sends modified data to client

4. client receives modified data and displays line on
its screen

Application Layer 2-39

Socket programming with UDP

UDP: no “connection’ between client & server
* no handshaking before sending data

= sender explicitly attaches IP destination address and
port # to each packet

" receiver extracts sender |IP address and port# from
received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
*= UDP provides unreliable transfer of groups of bytes
(“datagrams”) between client and server

Application Layer 2-40

Client/server socket interaction: UDP

server (running on serverIP)

create socket, port= x:

serverSocket =
socket(AF _INET,SOCK DGRAM)

read datagram fmcn/

serverSocket

write reply to —

serverSocket —
specifying

client address,

port number

client

create socket:

clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

read 'datagram from
clientSocket

close
clientSocket

Application 2-41

Example app: UDP client

Python UDPClient
include Python’s socket

library » from socket import *
serverName = ‘hostname’
serverPort = 12000

create UDP socket for clientSocket = socket(AF INET,
server | SOCK DGRAM)
get user keyboard message = raw_input('Input lowercase sentence:’)
input » clientSocket.sendto(message.encode(),
Attach server name, port to (SewerName, Sewerport))
message; send into socket .
modifiedMessage, serverAddress =
read reply characters from —» clientSocket.recvfrom(2048)

socket into string print modifiedMessage.decode()

clientSocket.close()

print out received string —
and close socket

Application Layer 2-42

Examele app: UDP server

Python UDPServer

from socket import *

serverPort = 12000
~serverSocket = socket(AF_INET, SOCK_DGRAM)
' serverSocket.bind((", serverPort))

create UDP socket

bind socket to local port

number 12000 print (“ The server is ready to receive”)

while True:
loop forever > message, clientAddress = serverSocket.recvfrom(2048)
Read from UDP socket into _ modifiedMessage = message.decode().upper()

message, getting client’s £
address (client IP and port) serverSocket.sendto(modifiedMessage.encode(),

clientAddress)
send upper case string ™~

back to this client

Application Layer 2-43

Socket programming with TCP

client must contact server = when contacted by client,
= server process must first be server TCP creates new socket
running for server process to

= server must have created communicate with that

socket (door) that particular client
welcomes client’ s contact * allows server to talk with

multiple clients

client contacts server by: « source port numbers used
= Creating TCP socket, to distinguish clients

specifying IP address, port (more in Chap 3)
number of server process

= when client creates socket: application viewpoint:
client TCP establishes TCP provides reliable, in-order
connection to server TCP byte-stream transfer (“pipe”)
between client and server

Application Layer 2-44

Client/server socket interaction: TCP

server (running on hostid) client

create socket,

port=x, for incoming
request:

serverSocket = socket()

wait for incoming TCP create socket,

connection reqUESt = == == == == == == =P connectto hostid, port=x
connectionSocket = CONNection setup clientSocket = socket()

serverSocket.accept()

— 1 send request using
read request from / clientSocket
connectionSocket

write reply to — |

connectionSocket —, read reply from
clientSocket

close 1

connectionSocket close l
clientSocket

Application Layer 2-45

Example app: TCP client

Python TCPClient

from socket import *
serverName = 'servername’
serverPort = 12000

e oot son 000 clientSocket = socket(AF_INET,
clientSocket.connect((serverNan
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence.encode())

E;’r::’esotr? attachserver . modifiedSentence = clientSocket.recv(1024)
print (‘From Server:’, modifiedSentence.decode())
clientSocket.close()

Application Layer 2-46

Example app: TCP server

Python TCPServer

from socket import *
create TCP welcoming serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)

socket >
serverSocket.bind((",serverPort))

serverSocket.listen(1)

server begins listening for

incoming TCP requests print ‘The server is ready to receive’
while True:
loop forever . connectionSocket, addr = serverSocket.accept()

»

server wa_its on accept()
for incoming requests, new sentence = connectionSocket.recv(1024).decode()

socket created on return S
capitalizedSentence = sentence.upper()
read bytes from socket (but > connectionSocket.send(capitalizedSentence.
not address as in UDP) encode())
connectionSocket.close()

close connection to this ———
client (but not welcoming
socket)

Application Layer 2-47

Chapter 2: summary

our study of network apps now complete!

= application architectures " specific protocols:
* client-server s HTTP
* P2P SMTP, POP, IMAP
= application service * DNS
requirements: * P2P: BitTorrent
* reliability, bandwidth, delay = video streaming, CDNs
" |nternet transport service " socket programming:
model TCP, UDP sockets
* connection-oriented,
reliable: TCP

* unreliable, datagrams: UDP

Application Layer 2-48

Chapter 2: summary

most importantly: learned about protocols!

" typical requeﬁt/reply important themes:
Message exchange. = control vs. messages

* client requests info or ¢ in-band, out-of-band

service i i
ds with » centralized vs. decentralized
[]
Server responds wit = stateless vs. stateful

data, status code .)
. " reliable vs. unreliable message
" message formats:

. . transfer
* headers: fields giving L« lexi K
info about data comp exity at networ
edge

* data: info(payload)
being communicated

Application Layer 2-49

	Slide 1: Τεχνολογίες Διαδικτύου 2025-26 (DIT 315)
	Slide 2: Chapter 2: outline
	Slide 3: Pure P2P architecture
	Slide 4: File distribution: client-server vs P2P
	Slide 5: File distribution time: client-server
	Slide 6: File distribution time: P2P
	Slide 7
	Slide 8: P2P file distribution: BitTorrent
	Slide 9
	Slide 10: BitTorrent: requesting, sending file chunks
	Slide 11: BitTorrent: tit-for-tat
	Slide 12: Chapter 2: outline
	Slide 13: Video Streaming and CDNs: context
	Slide 14: Streaming stored video:
	Slide 15: HTTP Adaptive Streaming (HAS)
	Slide 16: Streaming multimedia: DASH
	Slide 17
	Slide 18: Streaming multimedia: DASH
	Slide 19: HTTP Adaptive Streaming (HAS)
	Slide 20: Chunks
	Slide 21: Manifest file
	Slide 22
	Slide 23: Content distribution networks
	Slide 24: Content distribution networks
	Slide 25
	Slide 26: CDN content access: a closer look
	Slide 27
	Slide 28: Content distribution networks
	Slide 29: Case study: Netflix
	Slide 30: Case study: Netflix
	Slide 31: Chapter 2: outline
	Slide 32: Socket programming
	Slide 33
	Slide 34
	Slide 35: Multiplexing/demultiplexing
	Slide 36: How demultiplexing works
	Slide 37: Connection-oriented demultiplexing
	Slide 38: Connection-oriented demultiplexing: example
	Slide 39: Socket programming
	Slide 40: Socket programming with UDP
	Slide 41: Client/server socket interaction: UDP
	Slide 42
	Slide 43
	Slide 44: Socket programming with TCP
	Slide 45: Client/server socket interaction: TCP
	Slide 46
	Slide 47
	Slide 48: Chapter 2: summary
	Slide 49

