Chapter 3
Transport Layer

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a /ot of work on our part.
In return for use, we only ask the following:

= If you use these slides (e.g., in a class) that you mention their
source (after all, we'd like people to use our book!)

= If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.
Thanks and enjoy! JFK/KWR

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved

James F. Kurose | Keith W. Ross

e e

MPUTER. ™
NETWORKING

ATOP-DOWN APPROACH
@ Eighth Fdition

W

Computer Networking: A
Top-Down Approach

8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Transport Layer: 3-1

Transport layer: overview

Our goal:
= understand principles = |earn about Internet transport
behind transport layer layer protocols:
services: * UDP: connectionless transport
* multiplexing, * TCP: connection-oriented reliable
demultiplexing transport
* reliable data transfer * TCP congestion control

 flow control
e congestion control

Transport Layer: 3-2

Transport layer: roadmap

" Transport-layer services

=" Multiplexing and demultiplexing

= Connectionless transport: UDP

" Principles of reliable data transfer

= Connection-oriented transport: TCP
" Principles of congestion control

= TCP congestion control

" Evolution of transport-layer
functionality

Transport Layer: 3-3

Transport services and protocols

= provide logical communication
between application processes
running on different hosts

" transport protocols actions in end
systems:

* sender: breaks application messages
into segments, passes to network layer

* receiver: reassembles segments into
messages, passes to application layer

= two transport protocols available to
Internet applications

* TCP, UDP

PP
transport

Transport Layer: 3-4

Transport vs. network layer services and protocols

— household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

" hosts = houses
" processes = kids

" app messages = letters in
envelopes

HERE was an old woman who lived in a shce,

She had so many children, she didn’t know whn‘ﬁo‘c'lo.
* She gave them some milk and nice butter bread,

She kissed them all round and put them to bed.

Lo

Transport Layer: 3-5

Transport vs. network layer services and protocols

— household analogy:

» :
transport layer: 12 kids in Ann’s house sending

communication between letters to 12 kids in Bill’s
processes house:
* relies on, enhances, network " hosts = houses
layer services " processes = kids
" app messages = letters in
" network layer: envelopes
' " transport protocol = Ann and Bill
communication between who demux to in-house siblings
hosts " network-layer protocol = postal

service

Transport Layer: 3-6

Processes communicating

process: program
running within a host

= within same host, two
processes communicate
using inter-process
communication (defined by
0S)

= processes in different hosts
communicate by
exchanging messages

- clients, servers

client process: process
that initiates
communication

server process. process
that waits to be contacted

= aside: applications with P2P
architectures have client
processes & server
processes

Sockets

" process sends/receives messages to/from its socket

= socket analogous to door
e sending process shoves message out door

* sending process relies on transport infrastructure on other
side of door to deliver message to socket at receiving
process

application

socket \

~

application

controlled by
app developer

controlled

Internet

v

Addressing processes

" to receive messages, a
process must have identifier

= host device has unique 32-
bit IP address

= Q: does IP address of host
on which process runs
suffice for identifying the

PEOZE$SS, many processes
can be running on same
host

" jdentifier includes both IP
address and port numbers

associated with process on
host.

= example port numbers:
* HTTP server: 80
* mail server: 25

" to send HTTP message to
gaia.cs.umass.edu web
server:

e |P address: 128.119.245.12
e port number: 80

Transport Layer Actions

Sender:
= js passed an application-
layer message

= determines segment
header fields values

= creates segment
= passes segment to IP

app. msg

app. msg

Transport Layer: 3-10

Transport Layer Actions

C)!pp- msg

L]

app. msg

Receiver:
= receives segment from IP
= checks header values

= extracts application-layer
message

= demultiplexes message up
to application via socket

Transport Layer: 3-11

Two principal Internet transport protocols

networ
data lini

" TCP: Transmission Control Protocol
* reliable, in-order delivery
e congestion control
 flow control
* connection setup
= UDP: User Datagram Protocol

* unreliable, unordered delivery
* no-frills extension of “best-effort” IP

® services not available:

e delay guarantees
* bandwidth guarantees

Transport Layer: 3-12

Chapter 3: roadmap

" Multiplexing and demultiplexing

Transport Layer: 3-13

client

application

NETFLIX e,

HTTP server

HTTP msg

H. HTTP msg

tra nsport‘

H,H, HTTP msg

H,H, HTTP msg

link

physical

<«— |H,H, HTTP msg

application

e

transport

network

link

physical

Transport Layer: 3-14

Q: how did transport layer know to deliver message to Firefox
browser process rather than Netflix process or Skype process?

client

/ APACHE —
application HT‘TP SERVER application
NETFLIX Q
transport

network

link
physical

Transport Layer: 3-15

de-multiplexing

7

\ . . . -‘" t'o | l
: . » . ” 4 ' - 1A ’ " w
‘ v ‘) (' r\ ﬁ.oWr‘ C .4 o. < "
. ..Lwc h--... I

3KY

 PRIORITY

multiplexing

Multiplexing

Multiplexing/demultiplexing

- multiplexing as sender: —— — demultiplexing as receiver: —
handle data from multiple use header info to deliver
sockets, add transport header received segments to correct
(later used for demultiplexing) socket

application

|

application

application [1=] socket
R O process

——{ 4| L

netwaork trandport

Ik netyork
physical

[{k ' \\
physical

Transport Layer: 3-24

How demultiplexing works

" host receives IP datagrams

e each datagram has source IP
address, destination IP address

e each datagram carries one
transport-layer segment

e each segment has source,
destination port number

" host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits -

source port dest port #

S—

other header fields

application
data

(payload)

TCP/UDP segment format

Transport Layer: 3-25

Connectionless demultiplexing

= when creating socket, must
specify host-local port #:

DatagramSocket mySoclks
= new DatagramSockg

=" when creating datagram to
send into UDP socket, must
specify
* destination IP address
 destination port #

when receiving host receives
UDP segment:

* checks destination port # in
segment

 directs UDP segment to
socket with that port #

!

IP/UDP datagrams with same dest.
port #, but different source IP
addresses and/or source port

numbers will be directed to same

socket at receiving host

Transport Layer: 3-26

Connectionless demultiplexing: an example

mySocket =
socket (AF_INET, SOCK_ DGRAM)

mySocket.bind (myaddr, 6428) ;

mySocket = socket (AF_INET, mySocket = socket (AF INET,
SOCK_DGRAM) -

_ SOCK_DGRAM)
mySocket.bind (myaddr, 9157) ; mySocket.bind (myaddr,5775) ;

application
application application
44
. trAmsport T a0l
tramgport Network trangport
nefwork link netwprk
link physichl link
[‘./. physdical &= phyical \
e o
~ D =
source port: 6428 source port: ?
. dest port: 9157 . dest port: ?
> g 4
source port: 9157 source port: ?

dest port: 6428 dest port: ?

Connection-oriented demultiplexing

= TCP socket identified by
4-tuple:
e source |IP address
* source port number
e dest IP address
e dest port number

" demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

" server may support many
simultaneous TCP sockets:

e each socket identified by its
owhn 4-tuple

e each socket associated with
a different connecting client

Transport Layer: 3-28

Connection-oriented demultiplexing: example

_— // APACHE
HTTP SERVER
application application
4 *ans‘port T T,
tranpport Hetwlork transpo_rtA_
netyork ! lidk network
link = hydical link -
g’ ‘(Phypical I server: [P physical 5 ?\
e address B e
host: |P source IP,port: B,80 e host: IP
address A dest IP,port: A,9157 source JP-port—6 775 address C
- dest IR, port: B,80
source IP,popt-A;E -
dest IP{port: B,80 c —

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

dest I

source [Ppertl 9157
P,port: B,80

Transport Layer: 3-29

Summary

= Multiplexing, demultiplexing: based on segment, datagram
header field values

= UDP: demultiplexing using destination port number (only)

" TCP: demultiplexing using 4-tuple: source and destination IP
addresses, and port numbers

= Multiplexing/demultiplexing happen at all layers

Transport Layer: 3-30

Chapter 3: roadmap

= Connectionless transport: UDP

Transport Layer: 3-31

UDP: User Datagram Protocol

= “no frills,” “bare bones”
Internet transport protocol

= “best effort” service, UDP
segments may be:

* |ost
* delivered out-of-order to app

®m connectionless:

* no handshaking between UDP
sender, receiver

* each UDP segment handled
independently of others

- Why is there a UDP?

no connection
establishment (which can
add RTT delay)

simple: no connection state
at sender, receiver

small header size

no congestion control

= UDP can blast away as fast as
desired!

= can function in the face of
congestion

Transport Layer: 3-32

UDP: User Datagram Protocol

= UDP use:
" streaming multimedia apps (loss tolerant, rate sensitive)
=" DNS
= SNMP
= HTTP/3

= if reliable transfer needed over UDP (e.g., HTTP/3):
" add needed reliability at application layer
= add congestion control at application layer

Transport Layer: 3-33

UDP: User Datagram Protocol [RFC 768]

INTERNET STANDARD

RFC 768 J. Postel
ISI
28 August 1980

User Datagram Protocol

Introduction

This User Datagram Protocol (UDP) is defined to make available a
datagram mode of packet-switched computer communication in the
environment of an interconnected set of computer networks. This
protocol assumes that the Internet Protocol (IP) [1l] is used as the
underlying protocol.

This protocol provides a procedure for application programs to send
messages to other programs with a minimum of protocol mechanism. The
protocol 1is transaction oriented, and delivery and duplicate protection
are not guaranteed. Applications requiring ordered reliable delivery of
streams of data should use the Transmission Control Protocol (TCP) [2].

0 78 15 16 23 24 31

R Femm e ———— Femm e ———— I +

Source Destination
Port Port

R Femm e ———— Femm e ———— I +
Length | Checksum |

S S — S S —— S S —— S R +

data octets ...

e — ... Transport Layer: 3-34

UDP: Transport Layer Actions

SNMP client

application

transport
(UDP)

network (IP)
link
physical

SNMP server

application

transport
(UDP)

network (IP)

link

physical

/

Transport Layer: 3-35

UDP: Transport Layer Actions

UDP sender actions:
= js passed an application-
layer message

= determines UDP segment
header fields values

= creates UDP segment
= passes segment to IP

SNMP server

SNMP msg

UDP,

SNMP msg

Transport Layer: 3-36

UDP: Transport Layer Actions

- SNMP server
SNMP client UDP receiver actions:

= receives segment from IP
= checks UDP checksum

ONMP m—— header value
= extracts application-layer
message

= demultiplexes message up
to application via socket

= — _—

UDP, | SNMP msg

Transport Layer: 3-37

UDP segment header

“ 32 bits >

M. dest port # ‘

length <[checksum

application
data

length, in bytes of
UDP segment,
including header

\ data to/from

UDP segment format application layer

/[

Transport Layer: 3-38

UDP checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

15t number 2nd number sum

Transmitted: 5 6 11

v

Received: 4 6 11
\] J l_'_l
receiver-computed sender-computed
checksum checksum (as received)

0,

Transport Layer: 3-39

Internet checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

sender: receiver:

" treat contents of UDP = compute checksum of received
segment (including UDP header segment

fields and IP addresses) as _
sequence of 16-bit integers " check if computed checksum equals

= checksum: addition (one’s checksum field value:
complement sum) of segment * not equal - error detected
content e equal - no error detected. But maybe

. ?
= checksum value out into errors nonetheless? More later

UDP checksum field

Transport Layer: 3-40

Internet checksum: an example

example: add two 16-bit integers

11100110011 00110
11 01010101010101

wraparound (1)1 01 1101110111011

sum 1 0111011101111 00
checksum 0100010001 000O0O1I1

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
Transport Layer: 3-41

Internet checksum: weak protection!

example: add two 16-bit integers

1110011001100 1210
1101010101010 10 1

wraparound 1)1 01 1 1 01110111011 Even though
| - numbers have

sum 1011101110111100 [changed|bit

flips), no change
checksum 01 00010001000O011 in checksum!

Transport Layer: 3-42

Summary: UDP

" “no frills” protocol:

e segments may be lost, delivered out of order

e best effort service: “send and hope for the best”
= UDP has its plusses:

* no setup/handshaking needed (no RTT incurred)
e can function when network service is compromised
* helps with reliability (checksum)

" build additional functionality on top of UDP in application layer
(e.g., HTTP/3)

Chapter 3: roadmap

" Principles of reliable data transfer

Transport Layer: 3-44

Principles of reliable data transfer

N — &

= sending receiving Bl
process process
application data

reliable service abstraction

Transport Layer: 3-45

Principles of reliable data transfer

A — 5
==, sending receiving
process process
application l

data
transport T

receiver-side
of reliable data
transfer protocol

transport
network

reliable service implementation

sender-side of
reliable data
transfer protocol

Transport Layer: 3-46

Principles of reliable data transfer

N — 5
==, sending receiving g
process process
application l

data
transport T

receiver-side
of reliable data
transfer protocol

sender-side of
reliable data
transfer protocol

Complexity of reliable data
transfer protocol will depend

(strongly) on characteristics of

/
transport
. work
unreliable channel (lose, netwer 4_]

corrupt, reorder data?)

reliable service implementation

Transport Layer: 3-47

Principles of reliable data transfer

Sender, receiver do not know

the “state” of each other, e.g.,

was a message received?

= unless communicated via a
message

2= sending
process
application
transport l

sender-side of
reliable data
transfer protocol

transport

network

reliable service implementation

Transport Layer: 3-48

Reliable data transfer protocol (rdt): interfaces

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

deliver_data(): called by rdt

to deliver data to upper layer

receiving Bl
process

udt send()

sender-side
implementation of
rdt reliable data
transfer protocol

data

packet

yd

udt_send(): called by rdt
to transfer packet over
unreliable channel to receiver

receiver-side
implementation of
rdt reliable data
transfer protoco

\/

Bi-directional communication over

unreliable channel

] rdt_rcv(

Tckﬂjver_data()

)

AN

rdt_rcv(): called when packet
arrives on receiver side of
channel

Transport Layer: 3-49

Reliable data transfer: getting started

We will:

" incrementally develop sender, receiver sides of reliable data transfer
protocol (rdt)

= consider only unidirectional data transfer
* but control info will flow in both directions!

= use finite state machines (FSM) to specify sender, receiver

event causing state transition
actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event

Transport Layer: 3-50

Turn switch OFE Turn switch ON
urn swi)
power to filament Turn switch ON

A

Turn switch OFF
no power to filament

Transport Layer: 3-51

rdt1.0: reliable transfer over a reliable channel

= underlying channel perfectly reliable
* no bit errors
* no loss of packets

= separate FSMs for sender, receiver:
* sender sends data into underlying channel
* receiver reads data from underlying channel

rdt_rcv(packet)

extract (packet,data)

\Wait for rdt_send(data)
call from)packet = make_pkt(data) receiver
deliver_data(data)

sender
above udt_send(packet)

Transport Layer: 3-52

rdt2.0: channel with bit errors

= underlying channel may flip bits in packet
e checksum (e.g., Internet checksum) to detect bit errors

" the question: how to recover from errors?

How do humans recover from “errors” during conversation?

Transport Layer: 3-53

rdt2.0: channel with bit errors

" underlying channel may flip bits in packet
e checksum to detect bit errors

" the question: how to recover from errors?

* acknowledgements (ACKs): receiver explicitly tells sender that pkt
received OK

* negative acknowledgements (NAKs): receiver explicitly tells sender
that pkt had errors

* sender retransmits pkt on receipt of NAK

— stop and wait
sender sends one packet, then waits for receiver response

Transport Layer: 3-54

rdt2.0: FSM specifications

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
iISNAK(rcvpkt)

udt_send(sndpkt)

Wait for
call from
above

sender

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

Transport Layer: 3-55

rdt2.0: FSM specification

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
iISNAK(rcvpkt)

udt_send(sndpkt)

Wait for
call from
above

sender

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

Note: “state” of receiver (did the receiver get my

message correctly?) isn’t known to sender unless

somehow communicated from receiver to sender
= that’s why we need a protocol!

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&
iISNAK(rcvpkt)

dt_send(sndpkt) rdt_rcv(rcvpkt) && corrupt(rcvpkt)
udt_send(NAK)

. C

Wait for
call from
below

call from
above

< rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

receiver

rdt_rcv(rcvpkt) &&’notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer: 3-57

rdt2.0: corrupted packet scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

Wait for
call from
above

rdt_rcv(rcvpkf} && corrupt(rcvpkt)

rdt_ rev(rcvpkt) && isACK(rcvpkt) RN ()

Wait for
A call from
below

receiver

>
rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer: 3-58

rdt2.0 has a fatal flaw!

what happens if ACK/NAK handling duplicates:
corrupted? = sender retransmits current pkt
= sender doesn’t know what if ACK/NAK corrupted
happened at receiver! = sender adds sequence number
" can’t just retransmit: possible to each pkt
duplicate = receiver discards (doesn’t

deliver up) duplicate pkt

— stop and wait

sender sends one packet, then
waits for receiver response

Transport Layer: 3-59

rdt2.1: sender, handling garbled ACK/NAKSs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt) rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
Wait for isSNAK(rcvpkt))

ACK
NAK%r udt_send(sndpkt)

Wait for
call O from
above

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt) && rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

ISACK(rcvpil) && isACK(rcvpkt)
A A
rdt_rcv(rcvpkt)
&& (corrupt(rcvpkt) ||
isSNAK(rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer: 3-60

rdt2.1: receiver, handling garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\ sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (not corrupt(rcvpkt) &&
has_seq1(rcvpkt) has seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum) sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt
N (sndpkd) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) udt_send(sndpk!)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer: 3-61

rdt2.1: discussion

sender:
= seq # added to pkt
= two seq. #s (0,1) will suffice.

= must check if received ACK/NAK
corrupted

= twice as many states

* state must “remember” whether
“expected” pkt should have seq #
ofOor1l

receiver:

=" must check if received packet
is duplicate
 state indicates whetherOor 1is
expected pkt seq #

= note: receiver can not know if
its last ACK/NAK received OK
at sender

Transport Layer: 3-62

rdt2.2: a NAK-free protocol

= same functionality as rdt2.1, using ACKs only

= instead of NAK, receiver sends ACK for last pkt received OK
* receiver must explicitly include seq # of pkt being ACKed

= duplicate ACK at sender results in same action as NAK:
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free

Transport Layer: 3-63

rdt2.2: sender, receiver fragments

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has_seq1(rcvpkt))

sndpkt =
make_pkt(ACK1,
chksum)
udt_send(sndpkt)

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)
.. — — . rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

, Wait for .
C;/}{zgtfiz:n ACK isSACK(rcvpkt,1))
101 0 udt_send(sndpkt)

________________ sender FSM
... fragment rdt_rcv(rcvpkt)
....................................... && notcorrupt(rcvpkt)
.. && isACK(rcvpkt,0)
. A
receiver FSM T
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

= T

Transport Layer: 3-64

rdt3.0: channels with errors and loss

New channel assumption: underlying channel can also lose
packets (data, ACKs)

e checksum, sequence #s, ACKs, retransmissions will be of help ...

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?

Transport Layer: 3-65

rdt3.0: channels with errors and loss

Approach: sender waits “reasonable” amount of time for ACK

= retransmits if no ACK received in this time
= if pkt (or ACK) just delayed (not lost):

* retransmission will be duplicate, but seq #s already handles this!

e receiver must specify seq # of packet being ACKed

= use countdown timer to interrupt after “reasonable” amount
of time

N [/meout

Transport Layer: 3-66

rdt3.0 sender

rdt_send(data)
\ sndpkt = make_pkt(0, data, checksum)

\ udt_sendisadpids
start_timer
Wait
for
ACKO
rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt) rdt_rcv(rcvpkt)
&& isACK(rcvpkt,1) && notcorrupt(rcvpkt)
stop_timer && isACK(rcvpkt,0)
op_timer

Wait for

call 1 from
above

dt _send(data

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer: 3-67

rdt3.0 sender

rdt_send(data) rdt_rcv(rcvpkt) &&
\ sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||
\ udt_se:nd(sndpkt) iSACK(rcvpkt,1))
rdt_rcv(rcvpkt) start_timer A
A N
V}{a(;tffor timeout
call birom udt_send(sndpkt)
above .
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

timeout
udt_send(sndpkt) C

start_timer

rdt_rcv(rcvpkt)
A

rdt_rcv(rcvpkt) && rdt_send(data)
(corrupt(revpkt) || sndpkt = make_pkt(1, data, checksum)

iSACK(rcvpkt,0)) udt_send(sndpkt)
N start_timer

Transport Layer: 3-68

rdt3.0 in action

sender receiver
send pktO ktO
\\ Frcv pkto
ac send ackO
rcv ackO /Q/
send pktl \K
rcv pktl
ack send ackl
rcv ackl
send pktO \W\‘
rcv pkt0
ack send ackO

(a) no loss

sender receiver
send pkt0 ktO
\\ rcv pkto
ack send ackO
rcv ackO

send pkt1l \@x

‘ &) timeout]
resend pktl \K
rcv pktl

ack send ackl

rcv ackl

send pkt0 \W\‘
rcv pkt0
A}Ck)/ send ackO

(b) packet loss

Transport Layer: 3-69

rdt3.0 in action

sender receiver
send pkt0 ktO
\\ rcv pktO
ack send ackO
rcv ackO
send pktl ol
rcv pktl
XW send ackl

timeout_
resend pkt1 \K rcv pktl
(detect du

ack send acﬁnlcate)
rcv ackl
send pkt0 a0
rcv pktO
ack send ack0

(c) ACK loss

senaer receiver

send pkt0 —

PKtO ~, cv pkt0

Ko — send ackO
rC\éI af(k? ¢

sen t1_——~—~

P Pt ~ rcv pktl
~ send ackl

ack1

timeout_
resend pktl
Pkt rcv pktl

rcv ackl (detect duplicate)
send pkt0 pkt0 send ackl

ack rcv pktO

rcv ackl <
(ignore) ackO — send ack0

\
kt1
P —

(d) premature timeout/ delayed ACK

Transport Layer: 3-70

Performance of rdt3.0 (stop-and-wait)

" U ...~ Utilization — fraction of time sender busy sending

= example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

* time to transmit packet into channel:

D = L = 800,0 bits = 8 microsecs
trans — R 10° bits/sec

Transport Layer: 3-71

rdt3.0: stop-and-wait operation

sender

first packet bit transmitted, t = 0 —

4

RTT

A

ACK arrives, send next,
packet,t =RTT+L/R

receiver

— first packet bit arrives
— last packet bit arrives, send ACK

Transport Layer: 3-72

rdt3.0: stop-and-wait operation

sender receiver
_ L/R 11 L/é
Usender_ RTT+ L/ R
_.008 RTT
~30.008
= 0.00027 -

= rdt 3.0 protocol performance stinks!
= Protocol limits performance of underlying infrastructure (channel)

Transport Layer: 3-73

rdt3.0: pipelined protocols operation

pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
packets
* range of sequence numbers must be increased
* buffering at sender and/or receiver

data pcackeT—» data packets—»
|||

g) g3

¥

<+— ACK packets

—

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

Transport Layer: 3-74

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —se-------- oo
last bit transmitted, t=L/ R ¢

first packet bit arrives
last packet bit arrives, send ACK

> last bit of 2n packet arrives, send ACK
—last bit of 3"d packet arrives, send ACK

RTT

ACK arrives, send next]
packet, t=RTT + L/ R: '

..................... 3-packet pipelining increases
""""""""""" utilization by a factor of 3!

3L/R 0024 |
U p— fo— p—
sender RTT+L/R 30.008 000061

Transport Layer: 3-75

Go-Back-N: sender

" sender: “window” of up to N, consecutive transmitted but unACKed pkts
* k-bit seq #in pkt header

send_base nexfsegnum dlready P——
i i ack’ed yet sent
[RREELEELERRRRDO00000 | semsoee) ot
t _ window size —4
N

» cumulative ACK: ACK(n): ACKs all packets up to, including seq # n
e on receiving ACK(n): move window forward to begin at n+1
= timer for oldest in-flight packet

" timeout(n): retransmit packet n and all higher seq # packets in window

Transport Layer: 3-76

Go-Back-N: receiver

= ACK-only: always send ACK for correctly-received packet so far, with
highest in-order seq #
* may generate duplicate ACKs
* need only remember rcv base

" on receipt of out-of-order packet:
e can discard (don’t buffer) or buffer: an implementation decision
* re-ACK pkt with highest in-order seq #

Receiver view of sequence number space:
received and ACKed

I I I I I Q I I I H H H HH I Out-of-order: received but not ACKed

rcv base)
— Not received

Transport Layer: 3-77

Go-Back-N in action

sender window (N=4)

NP 5678

REEE): 567 8
EPE) 567 8
EPE): 567 8

0] 1 2 3 4 JHk:
W12 3 4 5 ik

2 345 SN
0 1EEEE¥6 7 8
2 345 &

12 345 Saas

rcv ack0, send pkt4
rcv ackl, send pkt5

ignore duplicate ACK

Pkt 2 timeout

sender

send pkt0
send pktl
send pkt2-
send pkt3

(wait)

send pkt2
send pkt3
send pkt4
send pkt5

/

\X Joss

recelver

receive pkt0, send ackO
receive pktl, send ackl

receive pkt3, discard,
(re)send ackl

receive pkt4, discard,
(re)send ackl
receive pkt5, discard,
(re)send ackl

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

W

Transport Layer: 3-78

Selective repeat: the approach

" pipelining: multiple packets in flight

mreceiver individually ACKs all correctly received packets
* buffers packets, as needed, for in-order delivery to upper layer

=sender:
* maintains (conceptually) a timer for each unACKed pkt
* timeout: retransmits single unACKed packet associated with timeout

* maintains (conceptually) “window” over N consecutive seq #s
* limits pipelined, “in flight” packets to be within this window

Transport Layer: 3-79

Selective repeat: sender, receiver windows

send_base hexfsegnum

| d ble, not
L i géﬁ’oec}/ 32? seeh’rho
N | e o
y S wEndow size —24
: N

(a) sender view of seguence numbers

out of order

acceptable
(buffered) but ¥ (ithin window)
already ack’'ed

IIIIIIIII II II"I"IIII””] Expected, not not usable
yet received

t __ vindow size—24

N
rcv_base

(b) receiver view of sequence numbers

Transport Layer: 3-80

Selective repeat: sender and receiver

— sender
data from above:

" if next available seq # in
window, send packet

timeout(n):
= resend packet n, restart timer
ACK(n) in [sendbase,sendbase+N-1]:

" mark packet n as received

= if n smallest unACKed packet,

advance window base to next
unACKed seq #

—receiver

packet n in [rcvbase, rcvbase+N-1]
= send ACK(n)
= out-of-order: buffer

= in-order: deliver (also deliver
buffered, in-order packets),
advance window to next not-yet-
received packet
packet n in [rcvbase-N,rcvbase-1]
= ACK(n)

otherwise:

" ignore

Transport Layer: 3-81

Selective Repeat in action

sender window (N=4) sender receiver

EPE): 567 8 send pkt0

EEE): 567 8 send pktl \ |

5678 send pktz-\ receive pkt0, send ack0

5678 send pkt3 X /oss receive pktl, send ackl
(wait)

receive pkt3, buffer,
okEE6 78 rcv ack0, send pkt4 send ack3

W12 3 4 5 ik
rev ackl, send pktS receive pkt4, buffer,

record ack3 arrived send ack4

— / receive pkt5, buffer,
Pkt 2 timeout | send ack5
0 1KY 7 8 send pkt2
W12 345 Wk (but not 3,4,5) \
K12 3 4 5 A rcv pkt2; deliver pkt2,
0 1EEENF6 7 8 / pkt3, pkt4, pkt5; send ack2

Transport Layer: 3-82

Selective repeat:
a dilemmal

example:

= seq #s:0, 1, 2, 3 (base 4 counting)
= window size=3

sender window receiver window
(after receipt) (after receipt)
[E¥)s 012
[EE:012 oflEE]o 12
0 12 KNEIW 0 1EEN]1 2
0 1 2EY K2

oo 12
W 2 3 0§

pkt0 will accept packet

with seq number 0
(@) no problem

EH: 0 1 2 —Pkt0

BEHs 0 12 —pktl 312 3[EW
[EE:012 _pkt2 X 0 1EEN]1 2

0 1 2KNKl2
timeout

retransmit pktO

ERs 012 —RKO ,
will accept packet

(b) | with seq number 0
oops!

Transport Layer: 3-83

sender window receiver window

SEleCtive re peat: (after receipt) (after receipt)
a dilemmal l7 —
01-12

— 01 2F K2

example:
" seq #s:0, 1, 2, 3 (base 4 counting) " receiver can't . will accept packet
. . see sender side with seq number 0
= window size=3 = receiver
behavior
identical in both
cases!

between sequence # size and 312
window size to avoid problem
in scenario (b)?

will accept packet
with seq number 0

= something’s
Q: what relationship is needed (very) wrong! l7 ofEK0 12

Transport Layer: 3-84

Chapter 3: roadmap

" Connection-oriented transport: TCP
¢ segment structure
* reliable data transfer
* flow control
* connection management

Transport Layer: 3-85

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

" point-to-point: = cumulative ACKs
* one sender, one receiver = pipelining:
" reliable, in-order byte « TCP congestion and flow control
stream: set window size
* no “message boundaries” " connection-oriented:
" full duplex data: * handshaking (exchange of control

messages) initializes sender,
receiver state before data exchange

* bi-directional data flow in
same connection

* MSS: maximum segment size = flow controlled:
e sender will not overwhelm receiver

Transport Layer: 3-86

TCP segment structure

32 bits

&
<

v

source port # dest port #

ACK: seq # of next expected

sequence number

byte; A bit: this is an ACK ~~———_

——acknowledgement number

length (of TCP header)

head| not
len |used

C

\~

| —

ElUIAIP|R[S|IF| receive window

P

Internet checksum

hecksdm

C, E: congestion notification

7

tions (variable length)

TCP options /

RST, SYN, FIN: connection /

management

/

application
data

segment seq #: counting

bytes of data into bytestream
(not segments!)

flow control: # bytes
receiver willing to accept

data sent by

(variable length)

application into
TCP socket

Transport Layer: 3-87

TCP sequence numbers, ACKs

Sequence numbers:

* byte stream “number” of
first byte in segment’s data

Acknowledgements:

* seq # of next byte expected
from other side

e cumulative ACK

Q: how receiver handles out-of-
order segments
 A: TCP spec doesn’t say, - up
to implementor

outgoing segment from sender

source port #

sequence number

acknowledgement number

dest port #

rwnd

checksum

urg pointer

window size

N

sender sequence number space

sent
ACKed

sent not-

usable not
yet ACKed but not usable
(Min-flight”) Yet sent

source port #

dest port #

A

sequence number

I acknowledgement number

rwnd

checksum

urg pointer

putgoing segment from receiver

Transport Layer: 3-88

TCP sequence numbers, ACKs

simple telnet scenario
Host A,

q p Host B

\CK=79, data= ‘C’ ,
dk host ACKs receipt
of ‘C’, echoes back ‘C’

User types ‘C’

host ACKs receipt

of echoed ‘C’ \\

The key thing to note here is that the ACK number (43) on the B-to-A segment is one more than the sequence
number (42) on the A-to-B segment that triggered that ACK

Similarly, the ACK number (80) on the last A-to-B segment is one more than the sequence number (79) on the
B-to-A segment that triggered that ACK

Transport Layer: 3-89

TCP round trip time, timeout

Q: how to set TCP timeout

value?

" longer than RTT, but RTT varies!

" too short: premature timeout,
unnecessary retransmissions

" too long: slow reaction to
segment loss

Q: how to estimate RTT?

" SampleRTT : measured time
from segment transmission until
ACK receipt

* ignore retransmissions

" SampleRTT will vary, want
estimated RTT “smoother”

¢ average several recent

measurements, not just current
SampleRTT

Transport Layer: 3-90

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

exponential weighted moving average (EWMA)
influence of past sample decreases exponentially fast

typical value: o = 0.125

RTT (milliseconds)

350 -

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,

1 o N\ﬂm

& sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconds)
Transport Layer: 3-91

TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”
* large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

eStimaIted RTT “SafetyIm argin”

" DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

DevRTT = (1-f) *DevRTT + [3*|SampleRTT-EstimatedRTT |

(typically, B =0.25)

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ . o \ o)
ransport Layer: 3-

TCP Sender (simplified)

event: data received from
application

= create segment with seq #

= seq # is byte-stream number
of first data byte in segment

= start timer if not already
running

* think of timer as for oldest
unACKed segment

e expiration interval:
TimeOutlInterval

event: timeout

= retransmit segment that
caused timeout

= restart timer

event: ACK received

= if ACK acknowledges
previously unACKed segments

e update what is known to be
ACKed

e start timer if there are still
unACKed segments

Transport Layer: 3-93

TCP Receiver: ACK generation irecses)

Event at receiver TCP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms

expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK (cumulative acknowledgments)
arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer: 3-94

TCP: retransmission scenarios

Host A

g

N

—— timeout ——

\
Seq=92, 8 bytes of data

-
ACK=100

x/

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Host B

o

==

Host A Host B
| C

SendBase=92 \

Seq=92, 8 bytes of data
\
Seq=100, 20 bytes of dat

/

ACK=100

o

——timeout —

SendBase=100
SendBase=120

send cumulative
ACK for 120

SendBase=120

premature timeout

Transport Layer: 3-95

TCP: retransmission scenarios

Host A Host B
¥ T

N

/

Seq=92, 8 bytes of data

Seq=100, 20 bytew

ACK=100
X
ACK=120

/

A

Seq=120, 15 bytes of data

cumulative ACK covers
for earlier lost ACK

Transport Layer: 3-96

TCP fast retransmit

— JCP fast retransmit

if sender receives 3 additional
ACKs for same data (“triple
duplicate ACKs”), resend unACKed
segment with smallest seq #

= |ikely that unACKed segment lost,
so don’t wait for timeout

\

~

Receipt of three duplicate ACKs
indicates 3 segments received
after a missing segment — lost

segment is likely. So retransmit!

V{

x

timeout

Host A Host

Se =
seq \92, 8 byteg Of data

datay X
RO Q"

p\C\(g\OO

\(z'\oo

hFlOO, 20 bytes of data

Transport Layer: 3-97

Chapter 3: roadmap

" Connection-oriented transport: TCP

* flow control
e connection management

Transport Layer: 3-98

TCP flow control

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Application removing
data from TCP socket
buffers

Network layer
delivering IP datagram

payload into TCP |

socket buffers

application
proces

TCP socket
receiver buffers

from sender |

receiver protocol stack

Transport Layer: 3-99

TCP flow control

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Application removing
data from TCP socket
buffers

Network layer
delivering IP datagram

payload into TCP |

socket buffers

application

TCP socket
receiver buffers

|
1
1
from sender |

receiver protocol stack

Transport Layer: 3-100

TCP flow control

I
|
QWhatOhappens if network Application removing proces
layer delivers data faster than data from TCP socket
. . buffers
application layer removes TCP soeket
data from socket buffers? receiver buffers

receive window flow control: # bytes

receiver willing to accept

|
1
1
from sender |

receiver protocol stack

Transport Layer: 3-101

TCP flow control

I
|
QWhatOhappens if network Application removing proces
layer delivers data faster than data from TCP socket
. . buffers
application layer removes TCP soeket
data from socket buffers? receiver buffers
—flow control

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

from sender |

receiver protocol stack

Transport Layer: 3-102

TCP flow control

= TCP receiver “advertises” free buffer
space in rwnd field in TCP header
e RevBuffer size set via socket
options (typical default is 4096 bytes)

* many operating systems auto-adjust
RcvBuffer

= sender limits amount of unACKed
(“in-flight”) data to received rwnd

" guarantees receive buffer will not
overflow

to application process

RcvBuffer buffered data

T

rwnd

_L free buffer space

1

TCP segment payloads

|

TCP receiver-side buffering

Transport Layer: 3-103

TCP flow control

= TCP receiver “advertises” free buffer
space in rwnd field in TCP header
e RevBuffer size set via socket
options (typical default is 4096 bytes)

* many operating systems auto-adjust
RcvBuffer

= sender limits amount of unACKed
(“in-flight”) data to received rwnd

" guarantees receive buffer will not
overflow

flow control: # bytes receiver willing to accept

N\

\ .]
receive window

TCP segment format

Transport Layer: 3-104

TCP connection management

before exchanging data, sender/receiver “handshake”:
= agree to establish connection (each knowing the other willing to establish connection)
" agree on connection parameters (e.g., starting seq #s)

. /

application

———0

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

- - ‘
application
[T 1

network

Socket clientSocket =

newSocket ("hostname" , "port number") ;

[al_lm |
connection state: ESTAB
connection Variables:

seq # client-to-server

server-to-client
rcvBuffer Size
at server,client

network

Socket connectionSocket =
welcomeSocket.accept () ;

Transport Layer: 3-105

Agreeing to establish a connection

2-way handshake:

T .
N s Q: will 2-way handshake always
T letstalk ___ work in network?
___—® ESTAB o
corap e— OK variable c.lelays
* retransmitted messages (e.g.
req_conn(x)) due to message loss
/“ .
% ﬁ " message reordering
choose x Teq_connlx,__ = can’t “see” other side

ESTAB &

Transport Layer: 3-106

2-way handshake scenarios

S |
choose x
“Feq_conn(x)

% ESTAB

acc_conn(x)

ESTAB '{

data(x+1)
+
.‘/ACK(X 1)
| _ connection _ |
X completes

No iroblem!

Transport Layer: 3-107

2-way handshake scenarios
g

N a

choose x

—
req_conn(x
> ESTAB

retransmit acc_conn(x)
req_conn(x) =
ESTAB
reg_conn(x)
connection |

client™ = x completes ~ [server
terminates forgets x

ESTAB

m Problem: half open
connection! (no client)

Transport Layer: 3-108

TCP 3-way handshake

Server state

serverSocket = socket (AF INET, SOCK STREAM)

Cl |ent State serverSocket.bind((', serverPort))
serverSocket.listen (1)
clientSocket = socket (AF_INET, SOCK_STREAM) connectionSocket, addr = serverSocket.accept ()
LISTEN -
clientSocket.connect ((serverName, serverPort)) - E LISTEN

choose init seq num, x

e
! send TCP SYN msg [~
SYNSENT SYNbit=1, Seq=x
choose init seq num, y
send TCP SYNACK

/ msg, acking SYN SYN RCVD
SYNbit=1, Seq=y
ACKbit=1; ACKnum=x-+1

v received SYNACK(x)
ESTAB indicates server is live; /
send ACK for SYNACK; |~

this segment may contain ACKbit=1, ACKnum=y+1

client-to-server data
! ver T~ |received ACK(y)

indicates client is live v
ESTAB

Transport Layer: 3-110

A human 3-way handshake protocol

K

- ‘J_i 2. Belay on.

3. Climbing. *

=

I,

[P L

- - -
.,
e
P o e e
o EQLn
- e

Transport Layer: 3-111

Closing a TCP connection

= client, server each close their side of connection
e send TCP segment with FIN bit=1

= respond to received FIN with ACK
e on receiving FIN, ACK can be combined with own FIN

= simultaneous FIN exchanges can be handled

Transport Layer: 3-112

Chapter 3: roadmap

" Principles of congestion control

Transport Layer: 3-113

Principles of congestion control

Congestion:

= informally: “too many sources sending too much data too fast for
network to handle”

" manifestations:
* long delays (queueing in router buffers)
* packet loss (buffer overflow at routers)

= different from flow control!

too many senders,
sending too fast

= 3 top-10 problem!

' ~ flow control: one sender
too fast for one receiver

Transport Layer: 3-114

Approaches towards congestion control

End-end congestion control:

" no explicit feedback from . "
network

&
= congestion inferred from %ACK T = e ﬁ
observed loss, delay S .." ACKs
\éﬂﬂl/ /

= approach taken by TCP = ==

Transport Layer: 3-125

Approaches towards congestion control

Network-assisted congestion
control:

= routers provide direct feedback
to sending/receiving hosts with 4
flows passing through congested
router

A= explicit congestion info

ACKs

" may indicate congestion level or
explicitly set sending rate

= TCP ECN, ATM, DECbit protocols

Transport Layer: 3-126

Chapter 3: roadmap

= TCP congestion control

Transport Layer: 3-127

TCP congestion control: AIMD

" gpproach: senders can increase sending rate until packet loss
(congestion) occurs, then decrease sending rate on loss event

- Additive Increase — Multiplicative Decrease]
increase sending rate by 1 cut sending rate in half at
maximum segment size every each loss event
RTT until loss detected

z /7// AIMD sawtooth
; // d ! behavior: probing
g for bandwidth

time Transport Layer: 3-128

TCP AIMD: more

Multiplicative decrease detail: sending rate is

= Cutin half on loss detected by triple duplicate ACK (TCP Reno)

= Cutto 1l MSS (maximum segment size) when loss detected by
timeout (TCP Tahoe)

Why AIMD?

= AIMD - a distributed, asynchronous algorithm — has been
shown to:

* optimize congested flow rates network wide!
* have desirable stability properties

Transport Layer: 3-129

TCP congestion control: details

sender sequence number space

TCP sending behavior:

cwnd
" roughly: send cwnd bytes,
wait RTT for ACKS, then

J send more bytes
last byte cwnd
ACKed sent, but not- ava"ab'e but TCP rate = bytes/sec

yet ACKed not used RTT

(“in-flight”) — last byte sent

= TCP sender limits transmission: LastByteSent- LastByteAcked < cwnd

= cwnd is dynamically adjusted in response to observed
network congestion (implementing TCP congestion control)

Transport Layer: 3-130

TCP slow start

" when connection begins,
increase rate exponentially
until first loss event:

* initially cwnd = 1 MSS
* double cwnd every RTT

e done by incrementing cwnd
for every ACK received

" summary: initial rate is
slow, but ramps up
exponentially fast

Host A Host B
™ =
lI W
|_
o
}

Transport Layer: 3-131

TCP: from slow start to congestion avoidance

Q: when should the exponential
increase switch to linear?

I
|

A: when cwnd gets to 1/2 of its . 27 e
value before timeout. gz estwen
Implementation: §° o g—
" variable ssthresh 2_ ———
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

= on loss event, ssthresh is set to
1/2 of cwnd just before loss event

Transmission round

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer: 3-132

Summary: TCP congestion control

dupACKcount++ new ACK cwnd = cwnd + MSS , (MSS/cwnd)

newALR dupACKcount = 0
cwnd = cwnd+MSS transmit new segment(s), as allowed
dupACKcount=0

/>transmit new segment(s), as allowed
cwnd > ssthresh

A

A

cwnd =1 MSS
ssthresh = 64 KB

ft’pf;) timeout
W $)V ssthresh = cwnd/2
P </ S wnd = 1 MSS duplicate ACK
&) timeout dupACKcount = 0 dupACKcount++
sthresh = cwnd/2 4 retransmit missing segment 4
cwnd =1 MSS
dupACKcount =0 =2 ,
t it missi t . S ¥ 5
retransmit missing segmen timeout(t <)
ssthresh = cwnd/2
gwngg K1 0 New ACK
up count = —
cwnd = ssthresh ==
dupACKcount == retransmit missing segment dupACKcount = 0 dupACKcount
ssthresh= cwnd/2 ssthgesh=t%wndr<2+ 3
cwnd = ssthresh + 3 cwnd = ssthres
retransmit missing segment retransmit missing segment

duplicate ACK
€) ownd=ownd+MsS
transmit new segment(s), as allowed

Transport Layer: 3-133

Fairness: must all network apps be “fair”?

Fairness and UDP Fairness, parallel TCP
* multimedia apps often do not connections
use TCP

= application can open multiple

do not want rate throttled by parallel connections between two

congestion control

= instead use UDP: hosts
* send audio/video at constant rate, = web browsers do this, e.g., link of
tolerate packet loss rate R with 9 existing connections:
= there is no “Internet police” * new app asks for 1 TCP, gets rate R/10
policing use of congestion * new app asks for 11 TCPs, gets R/2

control

Transport Layer: 3-143

Chapter 3: summary

= principles behind transport
layer services:
* multiplexing, demultiplexing
* reliable data transfer
* flow control
e congestion control

" instantiation, implementation
in the Internet
- UDP
* TCP

Up next:

" leaving the network
“edge” (application,
transport layers)

" into the network “core”

= two network-layer
chapters:

e data plane
e control plane

Transport Layer: 3-150

	Slide 1
	Slide 2: Transport layer: overview
	Slide 3: Transport layer: roadmap
	Slide 4: Transport services and protocols
	Slide 5: Transport vs. network layer services and protocols
	Slide 6: Transport vs. network layer services and protocols
	Slide 7: Processes communicating
	Slide 8: Sockets
	Slide 9: Addressing processes
	Slide 10: Transport Layer Actions
	Slide 11: Transport Layer Actions
	Slide 12: Two principal Internet transport protocols
	Slide 13: Chapter 3: roadmap
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Multiplexing/demultiplexing
	Slide 25: How demultiplexing works
	Slide 26: Connectionless demultiplexing
	Slide 27: Connectionless demultiplexing: an example
	Slide 28: Connection-oriented demultiplexing
	Slide 29: Connection-oriented demultiplexing: example
	Slide 30: Summary
	Slide 31: Chapter 3: roadmap
	Slide 32: UDP: User Datagram Protocol
	Slide 33: UDP: User Datagram Protocol
	Slide 34: UDP: User Datagram Protocol [RFC 768]
	Slide 35: UDP: Transport Layer Actions
	Slide 36: UDP: Transport Layer Actions
	Slide 37: UDP: Transport Layer Actions
	Slide 38: UDP segment header
	Slide 39: UDP checksum
	Slide 40: Internet checksum
	Slide 41: Internet checksum: an example
	Slide 42: Internet checksum: weak protection!
	Slide 43: Summary: UDP
	Slide 44: Chapter 3: roadmap
	Slide 45: Principles of reliable data transfer
	Slide 46: Principles of reliable data transfer
	Slide 47: Principles of reliable data transfer
	Slide 48: Principles of reliable data transfer
	Slide 49: Reliable data transfer protocol (rdt): interfaces
	Slide 50: Reliable data transfer: getting started
	Slide 51
	Slide 52: rdt1.0: reliable transfer over a reliable channel
	Slide 53: rdt2.0: channel with bit errors
	Slide 54: rdt2.0: channel with bit errors
	Slide 55: rdt2.0: FSM specifications
	Slide 56: rdt2.0: FSM specification
	Slide 57: rdt2.0: operation with no errors
	Slide 58: rdt2.0: corrupted packet scenario
	Slide 59: rdt2.0 has a fatal flaw!
	Slide 60: rdt2.1: sender, handling garbled ACK/NAKs
	Slide 61: rdt2.1: receiver, handling garbled ACK/NAKs
	Slide 62: rdt2.1: discussion
	Slide 63: rdt2.2: a NAK-free protocol
	Slide 64: rdt2.2: sender, receiver fragments
	Slide 65: rdt3.0: channels with errors and loss
	Slide 66: rdt3.0: channels with errors and loss
	Slide 67: rdt3.0 sender
	Slide 68: rdt3.0 sender
	Slide 69: rdt3.0 in action
	Slide 70: rdt3.0 in action
	Slide 71: Performance of rdt3.0 (stop-and-wait)
	Slide 72: rdt3.0: stop-and-wait operation
	Slide 73: rdt3.0: stop-and-wait operation
	Slide 74: rdt3.0: pipelined protocols operation
	Slide 75: Pipelining: increased utilization
	Slide 76: Go-Back-N: sender
	Slide 77: Go-Back-N: receiver
	Slide 78: Go-Back-N in action
	Slide 79: Selective repeat: the approach
	Slide 80: Selective repeat: sender, receiver windows
	Slide 81: Selective repeat: sender and receiver
	Slide 82: Selective Repeat in action
	Slide 83: Selective repeat: a dilemma!
	Slide 84: Selective repeat: a dilemma!
	Slide 85: Chapter 3: roadmap
	Slide 86: TCP: overview RFCs: 793,1122, 2018, 5681, 7323
	Slide 87: TCP segment structure
	Slide 88: TCP sequence numbers, ACKs
	Slide 89: TCP sequence numbers, ACKs
	Slide 90: TCP round trip time, timeout
	Slide 91: TCP round trip time, timeout
	Slide 92: TCP round trip time, timeout
	Slide 93: TCP Sender (simplified)
	Slide 94: TCP Receiver: ACK generation [RFC 5681]
	Slide 95: TCP: retransmission scenarios
	Slide 96: TCP: retransmission scenarios
	Slide 97: TCP fast retransmit
	Slide 98: Chapter 3: roadmap
	Slide 99: TCP flow control
	Slide 100: TCP flow control
	Slide 101: TCP flow control
	Slide 102: TCP flow control
	Slide 103: TCP flow control
	Slide 104: TCP flow control
	Slide 105: TCP connection management
	Slide 106: Agreeing to establish a connection
	Slide 107: 2-way handshake scenarios
	Slide 108: 2-way handshake scenarios
	Slide 110: TCP 3-way handshake
	Slide 111: A human 3-way handshake protocol
	Slide 112: Closing a TCP connection
	Slide 113: Chapter 3: roadmap
	Slide 114: Principles of congestion control
	Slide 125: Approaches towards congestion control
	Slide 126: Approaches towards congestion control
	Slide 127: Chapter 3: roadmap
	Slide 128: TCP congestion control: AIMD
	Slide 129: TCP AIMD: more
	Slide 130: TCP congestion control: details
	Slide 131: TCP slow start
	Slide 132: TCP: from slow start to congestion avoidance
	Slide 133: Summary: TCP congestion control
	Slide 143: Fairness: must all network apps be “fair”?
	Slide 150: Chapter 3: summary

