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MODELING UNSTRUCTURED DECISION PROBLEMS - THE THEORY OF ANALYTICAL 

HIERARCHIES 

Thomas L. SAATY 
The Wharton School, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA 

Quantitative modeling of unstructured decision problems with social implications is new and challenging and has 

pressing needs. A new approach to scaling using largest eigenvalues and reciprocal matrices and the effect of inconsistent 

judgment are introduced and relevant theory discussed. In this approach inconsistency is accepted as a fact but measured 

to determine how bad it is. Since most decision problems are hierarchical in form as they fulfill higher and still higher objec- 

tives, the appropriate structure for representation is a hierarchy. A new formal definition of a hierarchy is given and the 

notion of measurement with eigenvalues is extended to hierarchies. Both the eigenvalue approach to measurement and the 

hierarchical approach are illustrated with examples. Finally, unstructured problems are illustrated through applications of 

forward-backward planning, a two-point boundary value problem. 

1. Introduction 

Decision making is a practice we all engage in all 
the time. All human undertakings require initiative 
and action to choose one of several alternatives. Thus 
decision theory rather than being a theore tical con- 
cern must be a practical pursuit which shapes our think- 
ing about choices and is influenced by our intuition 
and judgment as to how we like to make our choices. 
Some decision theory has been normative without 
regard to human preferences. Here we turn the sub- 
ject around and look at it as a natural human preoccu- 
pation, formalize it and advocate its usage through 
participation. 

Since the behavioral sciences have no laws or invari- 
ants one can usually produce a counter example to 
every seemingly good hypothesis. For any modeling 
to be useful in this field it cannot be of the universal 
kind one is accustomed to in the natural sciences. It 
must attempt to describe or solve today’s problems 
with the people who have these problems. Thus, 
because of the lack of invariants, one can only describe 
the present happenings by cooperation with the people 
themselves and using their own judgments and inter- 
pretations guiding the model towards a satisfactory 
answer. Therefore useful modeling must be interactive 
and must include subjectivity arising out of the con- 
cerned party’s experience rather than dictated by the 

modeler, who may reflect complete ignorance of the 
occurrences. 

Decision theory is concerned with making an opti- 
mal choice among alternative outcomes. In order that 
the choice be rational, a way of making tradeoffs 
among the alternatives according to their various attri- 
butes must be known. 

Decision problems can be represented as in fig. 1. 
The structured and semi-structured parts of the figure 
are rather well understood. Most complex real-life 
problems are unstructured and the task is to estimate 
both the possible outcomes and their corresponding 
probabilities. In order to decrease the guesswork in 
estimating alternative outcomes, a set of extreme out- 
comes or scenarios is first identified and a most likely 
one is computed as a weighted combination of these 
outcomes. Hierarchical analysis is a technique used to 
estimate the weights of the possible outcomes. This 
forward planning process is sharpened by adjoining to 
its policies those estimated to be effective in attaining 
known desired outcomes from the backward process. 

Our first problem then is to identify alternative 
(forward) outcomes, together with the actors who by 
pursuing their objectives and policies (independently 
or through cooperation) attempt to bring about the 
likely outcomes. As a result of this interaction we ask 
“What is the outcome likely to emerge and what kind 
of measurement do we use to estimate this outcome?” 
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DECISION PROBLEMS 

I 
Structured 

I 
Semi-structured Unstructured 

Outcomes are known 

and policies known but 

not which outcome goes 

with which policy 

Certainty Risk Uncertainty Forward-Backward Design 

No probabilities 

involved. Making 

a choice which 

maximizes the 

utility 

Probabilities known; Probabilities unknown; 

maximize expected estimate them and esti- 

utilities mate outcome which 

maximizes expected 

utilities 

Probabilities unknown 

Modify policies 

Forward Backward 

Planning Planning 

Process Process 

Modify Desired Future 

Outcome Known 

Fig. 1 

Our next problem is to identify a desired outcome 
for each of the actors and assist them to modify their 
objectives and allocate their effort to wield the neces- 
sary influence to overcome problems or utilize oppor- 
tunities to attain their desired outcome. These objec- 
tives are adjoined to the forward process to test their 
effect on modifying the likely outcome more closely 
with the desired one. The process is repeated by modify- 
ing both the desired outcome and the change in objec- 
tives to attain that outcome. 

2. Reciprocal matrices and ratio scale estimates 

Assume that we are given it stones, A 1, . . . . A,, 
whose weights wl, . . . . w,,, respectively, are known to 
us. Let us form the matrix of pairwise ratios whose 
rows give the ratios of the weights of each stone with 
respect to all others. Thus we have the matrix A of 
table 1. We have multiplied A on the right by the vec- 
tor of weights w. The result of this multiplication is 
nw. Thus, to recover the scale from the matrix of ratios 
we must solve the problem Aw = nw or (A - nJ) w = 0. 

Outcome Unknown 

(To be specified in terms of 
state variables) 

This is a system of homogeneous linear equations. It 
has a nontrivial solution if and only if the determinant 
of (A - nl) vanishes, i.e., n is an eigenvalue of A. Now 
A has unit rank since every row is a constant multiple 
of the first row. Thus all its eigenvalues except one 
are zero. The sum of the eigenvalues of a matrix is 
equal to its trace and in this case, the trace of A is 
equal to n. Thus n is an eigenvalue of A and we have 
a nontrivial solution. The solution consists of positive 

Table 1 

The matrix A 

IA1A2An 
Wl Wl Wl 

A1 ---“‘w, Wl w2 

w2 w2 AzA2 - -...z 
Wl w2 
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entries and is unique to within a multiplicative con- 
stant (by the Perron-Frobenius theorem since A is 
irreducible, i.e., it is not decomposable into blocks of 

the form: 

*= ci O 
C 1 

c2 c3 . 

To make w unique we normalize its entries by dividing 
by their sum. Thus given the comparison matrix we 
can recover the scale. In this case the solution is any 
column of A normalized. Note that in A we have aii = 

1 /aij the reciprocal property. Thus, also, aii = 1. Also, 

A is consistent, i.e., its entries satisfy the condition 

ajk = aik/llij . 

Thus the entire matrix can be constructed from a set 
of n elements which form a chain across the rows and 
columns. 

In the general case we cannot give the precise values 
of wi/wi but estimates of them. For the moment let 
us consider an estimate of these values by an expert 
who we assume makes small errors in judgment. From 
matrix theory we know that small perturbation of the 
coefficients implies small perturbation of the eigen- 
values. Our problem now becomes A’w’ = A,,, w’ 
where A,, is the largest eigenvalue of A’. To simplify 

the notation we shall continue to write Aw = A,, w 
where A is the matrix of pairwise comparisons. The 
problem now is how good is the estimate w. Note that 
if we obtain w by solving this problem the matrix 
whose entries are Wi/Wi is a consistent matrix which is 
our consistent estimate of the matrix A. A itself need 
not be consistent. In fact, the entries of A need not 
even be ordinally consistent, i.e., Ai may be preferred 
toAa,Aa toAs, but,43 is preferred toAl. What we 
would like is a measure of the error due to inconsis- 
tency. It turns out that A is consistent if and only if 
h max = n and that we always have A,,, > n. This sug- 
gests using A,,, - n as an index of departure from 
consistency. But 

h ,,;,-?Z=-g Xi, Xmax=hr, 
i=l 

where hi, i = 1, . . . . n, are the eigenvalues of A. We 
adopt the average value (A,,, - n)/(n - 1) which is 
the (negative) average of Xi, i = 2, . . . . n (some of which 
may be complex conjugates!). On calculating this 

value we compare the result with those of the same 
index obtained as an average over a large number of 
matrices of the same order whose entries are random. 

However, we preserve the relations aii = l/aij, aii = 1 

in these matrices to improve consistency. The reason 
for this is that if one stone is estimated to be k times 

heavier than another, it does not seem unreasonable 
to require that the second stone be estimated to be 
l/k times the weight of the first. If the ratio of our 
index to that from random matrices is significantly 
small, we accept the estimates. Otherwise, we attempt 
to improve consistency by obtaining additional infor- 
mation. We shall not go into the details of this proce- 

dure. 
It is interesting to note that 2(h,, - n)(n - 1) is 

the variance of the error incurred in estimating aij. 
This can be shown by writing: 

aij = (Wi/Wj) Eij, 

and 

Eij > 0 

fij= 1 +6ij, 6ij>-1. 

It is 6ij that concerns us as the error component and 
its value for an unbiased estimator, i.e., 16 ij I < 1. 

What would be desirable is to obtain the density 
function of (A,, - n)/(n - 1). 

To conclude this section, we note that solution of 
the largest eigenvalue problem when normalized gives 
us a unique estimate of an underlying ratio scale. 

Before we go on to discussion of what numerical 
values we might use in making comparisons we need 
to discuss the problem of the size of a matrix. 

We note that (n2 - n)/2 judgments or estimates are 
necessary to fill a matrix. The question is whether this 
can be done with fewer estimates still obtaining a good 
answer. 

We note that in making the estimates and to keep 
the comparisons relevant an individual has to keep in 
mind all the elements being compared. It is known that 
an individual cannot simultaneously compare more 
than 7 + 2 elements. If this is so, then how is it that 
we have measurement across wide classes of objects. 
The answer to this is by hierarchical decomposition. 
The elements are grouped ordinally (as a first estimate) 
into comparability classes of about seven elements 
each. The element with the highest weight in the class 
of lighter weight elements is also included in the next 
heavier class and serves as a pivot to uniformize the 
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scale between the two classes. The procedure is 

repeated from a class to an adjacent one until we have 
all the elements appropriately scaled [3,4]. 

In passing, we note that the eigenvector approach 
to measurement (as one might expect) preserves ordi- 
nal preferences among the alternatives, i.e., if an alter- 
native is preferred to another, its eigenvector compo- 
nent is larger than that of the other. This theorem is 
also true in the general hierarchical use of eigenvalues 
which we discuss next. 

a) There is a partition of H into sets Lk, k = 1, . . . . h 
where L 1 = {b}, b a single element. 

b)xCLI(impliesx-CLk+r,k=l ,..., h-l. 
c)xELkimpliesx+CLk_r,k=2 ,..., h. 

For each x E H, there is a suitable weighting func- 
tion (whose nature depends on the phenomenon being 

hierachicahy structured): 

w, :x - [0, l] such that c w&J)= 1. 
Ya- 

3. What is a hierarchy 

Hierarchies play an important role in studying the 
impact of alternatives on the goals and objectives of a 
system. Usually the objectives are satisfied in different 
levels according to their generality and degree of impor- 
tance. By imbedding a problem in hierarchical form, 
one has to identify all the important factors and the 
levels to which they belong and measure the interaction 
between levels. Finally, a principle of hierarchical com- 
position is used to measure the impact of the factors in 
the lowest level on the highest objective of the hierarchy. 

The sets Lj are the levels of the hierarchy, and the 
function w, is the priority function of the elements 

in one level with respect to the objective x. We observe 
that even if x- # Lk (for some level Lk), w, may be 
defined for all of Lk by setting it equal to zero for all 
elements in Lk not in x-. 

The weighting function, we feel, is a significant 
contribution towards the application of hierarchy 
theory. 

Definition. A hierarchy is complete if, for all x E Lk, 
X + = Lk_l, for k = 2, . . . . h. 

There are several kinds of hierarchies, the simplest 
of which are dominance hierarchies which descend like 
an inverted tree with the boss at the top, followed by 
successive levels of bossing. Another kind are holarchies 
which are essentially dominance hierarchies with feed- 
back. Chinese box (or modular) hierarchies grow in 
size from the simplest elements or components (the 
inner boxes) to larger and larger aggregates (the outer 
boxes). In biology, neogenetic hierarchies are of inter- 

est because they have successive newly emerging top 
levels through evolution. We shall concentrate our 
attention on dominance hierarchies, although the 
theory described below is being generalized to the 
other hierarchical forms. 

There are many ways of defining a hierarchy. The 
one which suits our needs best here is the following: 
In an ordered set, we define x <y to mean that x <y 
and x Zy. y is said to cover (dominate) x if x <y 
and if x < t <y is possible for no t. We used the nota- 
tion x- = b lx coversy} and x+ = b ly covers x}, for 
any element x in an ordered set. 

Definition. Let H be a finite partially ordered set. His 
a hierarchy if it satisfies the conditions: 

We can state the central question: 
Basic problem. Given any element x EL,, and sub- 

set S E Lp, (a < p), how do we define a function w,, s : 
S + [0, l] which reflects the properties of the priority 
functions wY on the levels Lk, k = a, . . . . 0 - 1. Specif- 
ically, what is the function w&Q, : Lh + [0, l]? 

In less technical terms, this can be paraphrased thus: 

Given a social (or economic) system with a major ob- 
jective b, and the set Lh of basic activities, such that 
the system can be modelled as a hierarchy with largest 
element b and lowest level Lh. What are the priorities 
of the elements of Lh with respect to b? 

From the standpoint of optimization, to allocate 
a resource among the elements any interdependence 
must also be considered. Analytically, interdependence 
may take the form of input-output relations such as, 
for example, the interflow of products between indus- 
tries. A high priority industry may depend on flow of 
material from a low priority industry. In an optimiza- 
tion framework, the priority of the elements enables 
one to define the objective function to be maximized, 
and other hierarchies supply information regarding 
constraints, e.g., input-output relations. 

We shall now present our method to solve the basic 
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problem. Assume that Y = br, . . ..ymk) ELk and that 

x= 1x1, ..“X,R+I } E Lk+l. Without loss of generality 
we may assume that X = Lk+i , and that there is an 
element z EL such that y C z-. We then consider the 

priority functions 

w, : Y+ [O, I] 

and 

WY :x+ [O, 11, j = 1, . . . . f’,k. 

We construct the “priority function of the elements 
in X with respect to z,” denoted w, w : X + [0, 11, by 

w(XI) = g +&Xi) wztij) , i = 1, . . . . nk+l . 

It is obvious that this is no more than the process of 
weighting the influence of the element yi on the prior- 
ity of Xi by multiplying it with the importance of Xi 
with respect to z. 

The algorithms involved will be simplified if one 
combines the W,(Xi) into a matrix B by setting bij = 

w,(xi). If we further set Wi = W(Xi) and Wi = w,@i), 

then the above formula becomes 

Wi =$ biiW;> i= 1 f ...a nk+l. 

Thus, we may speak of the priority vector w and, 
indeed, of the priority matrix B of the (k + 1)st level; 
this gives the final formulation 

w=Bw’. 

The following is easy to prove: 

Theorem. Let H be a complete hierarchy with largest 
element b and h levels. Let Bk be the priority matrix 
of the kth level, k = 1, . . . . h. If W’ is the priority vec- 
tor of the pth level with respect to some element z in 
the (p - 1)st level, then the priority vector w of the 
qth level (p < q) with respect to z is given by 

w = B4B9_l . . . BP+lw’. 

Thus, the priority vector of the lowest level with 
respect to the element b is given by: 

w = BhBh_, .., Bzb,. 

If L1 has a single element, bl = 1. Otherwise, bl is a 
prescribed vector. 

The following observation holds for a complete 
hierarchy but it is also useful in general. The priority 
of an element in a level is the sum of its priorities in 
each of the comparison subsets to which it belongs; 
each weighted by the fraction of elements of the level 
which belong to that subset and by the priority of that 
subset. The resulting set of priorities of the elements 
in the level is then normalized by dividing by its sum. 
The priority of a subset in a level is equal to the prior- 
ity of the dominating element in the next level. 

4. The scale 

The scale we recommend for use which has been 

successfully tested and compared with other scales 
will now be discussed. 

The judgments elicited from people are taken qual- 

itatively and corresponding scale values assigned to 
them. In general, we do not expect the judgments to 
be consistent. 

Our choice of scale hinges on the following obser- 
vation. Roughly, the scale should satisfy the require- 
ments: 
1) It should be possible to represent people’s differ- 

ences in feelings when they make comparisons. It 
should represent as much as possible all distinct 
shades of feeling that people have. 

2) If we denote the scale values by x 1, x2, . . . . xp, then 
letXi+i -Xi= 1, . . ..p - 1. 
Since we require that the subject must be aware of 

all gradations at the same time, and we agree with the 
psychological experiments [3] which show that an 
individual cannot simultaneously compare more than 
seven objects (plus or minus two) without being con- 
fused, we are led to choose a p = 7 + 2. Using a unit 
difference between successive scale values is all that 
we allow, and using the fact that x 1 = 1 for the iden- 
tity comparison, it follows that the scale values will 
range from one to nine. 

As a preliminary step towards the construction of 
an intensity scale of importance for activities, we have 

broken down the importance ranks as shown in the 
scale of table 2. In using this scale the reader should 
recall that we assume that the individual providing the 
judgment has knowledge about the relative values of 
the elements being compared whose ratio is > 1 and 
that the numerical ratios he forms are nearest integer 
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Table 2 

The scale and its description 

Intensity of importance 

1 a) 

3 

5 

9 

2,4,6, 8 

Reciprocals of above 

non-zero 

Rationals 

T.L. Saaty /Modeling unstructured decision problems 

Definition 

Equal importance 

Weak importance of one over 

another 

Essential or strong importance 

Demonstrated importance 

Absolute importance 

Intermediate values between the 

two adjacent judgments 

If activity i has one of the above 

non-zero numbers assigned to it 

when compared with activity j, then 

j has the reciprocal value when com- 

pared with i 

Ratios arising from the scale 

Explanation 

Two activities contribute equally to the 

objective 

Experience and judgment slightly favor one 
activity over another 

Experience and judgment strongly favor one 

activity over another 

An activity is strongly favored and its domi- 

nance demonstrated in practice 

The evidence favoring one activity over another 

is of the highest possible order of affirmation 

When compromise is needed 

If consistency were to be forced by obtaining 

n numerical values to span the matrix 

a) On occasion in 2 by 2 problems, we have used 1 + t, 0 < E < i to indicate very slight dominance between two nearly equal 

activities. 

approximations scaled in such a way that the highest 
ratio corresponds to nine. 

At first glance one would like to have a scale extend 
as far out as possible. On second thought we discover 
that to give an idea how large measurement can get, 
scales must be finite. We also note that one does not 
measure widely disparate objects by the same yardstick. 
Short distances on a piece of paper are measured in 
centimeters, longer distances in a neighborhood in 
meters, and still larger ones in kilometers and even in 
light years. To make comparisons of the sizes of atoms 
with those of stars, people, in a natural fashion, insert 
between these extremes, objects which gradually grow 
larger and larger enabling one to discriminate in the 
process of transition among the orders of magnitude 
of measurement. To make such distinction possible 
the objects put in each group are within the range of 
the scale and the largest object in one group is used as 
the smallest one in the next larger group. Its scale val- 
ues in the two groups enable one to continue the mea- 
surement from one group to the next and so on. In 

practice, one way or another, the numerical judgments 
will have to be approximations, but how good is the 
question at which our theory is aimed. 

A typical question to ask in order to till in the 
entries in a matrix of comparisons is: Consider two 
properties i on the left side of the matrix and another 
j on the top; which of the two has the property under 
discussion more, and how strongly more (using the 
scale values 1 to 9)? This gives us aij. The reciprocal 
value is then automatically entered for Uii. 

Yet there is no satisfactory statistical theory that 
would assist us in deciding how well judgmental data 

correspond to reality. We have occasionally used the 
root mean square deviation (RMS) and the median 
absolute deviation about the median (MAD). These 
indicators are probably more useful when making 
inter-scale or inter-personal comparisons in judgments 
than as absolute measures of the goodness of fit. We 
have not found the Chi-square test useful. It is clear 
that this is an area of research that is worth pursuing. 

Considerable effort has been concentrated on com- 
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paring the scale 1 to 9 with 2.5 other scales suggested 
to us by a number of people. Space limitation prevents 
us from showing that this scale and small perturbations 
of it are better than practically all others. We used five 
different problems for which the real answers were 
later determined and the root mean square deviation 
and the median absolute deviation about the median 
were used for comparison of goodness of fit of the 
resulting eigenvector. 

5. Examples 

An interesting example illustrating the fact that 
eigenvectors give the correct results in the field of prob- 
ability, consider an urn with balls of three colors: two 
black, one white and three red. The probabilities of 
drawing a ball of one of these colors are, respectively, 

The pairwise comparison matrix giving the ratios 
of the number of balls of indicated colors is given in 
table 3. Since this matrix is consistent, the entries of 
any column after normalizing gives the ratio of balls 
of each color to the total. We have, for example, from 
the first column, 2, i, 2 which, as to be expected, 
corresponds to the probabilities that a ball drawn at 
random has one of the three colors. If the urn has a 
large number of balls whose relative quantities can be 
compared, this approach would give an estimate of the 
relative magnitude of each kind. 

5.1. The consumption of drinks in the United States 

Three individuals were asked to compare seven 
drinks consumed extensively in the United States with 
the idea that their estimates first done individually 
and then collectively of the dominance of consump- 
tion may give a close idea of the actual percentages 
among the seven drinks. The matrices are given in 

table 4. The actual percentages of drinks consumed, 

Table 3 

/B w R 

B 1 2 % 
W i 1 1 

3 

R s 3 1 

eigenvectors and eigenvalues are given in table 5. 
It should be emphasized that the individuals did 

not have access to the actual consumption figures un- 
til after the completion of the exercise. In all cases 

the closeness of the results was impressive and the con- 
sistency not bad. 

It is interesting to note that a group may not do 
better than an individual if some of them are more 
articulate than others and in addition have strong 
biases. It is best that they be allowed to speak briefly 
without forcing the vote their way. Generally, people 
should be encouraged to stick to their feelings unless 
they get a convincing and overriding reason from the 
others to change their beliefs. An average is probably 
better than a group decision under “no holds barred” 
type of coercion. On the other hand, fair democratic 
kind of interaction has often led to excellent results 
better than what individuals could do. 

5.2. Choosing a job 

A student who had just received his Ph.D. was inter- 
viewed for three jobs. His criteria for selecting the jobs 
and their pairwise comparison matrix are given in 
table 6. 

The pairwise comparison matrices of the jobs with 
respect to each criterion are given in table 7. The eigen- 
value and eigenvector of the first matrix are, respec- 
tively: X,, = 6.35;0.16,0.19,0.19,0.05,0.12, 0.30. 

The remaining eigenvalues and eigenvectors are 
given in table 8. The composite vector for the jobs is 
given by: 

A = 0.40, B = 0.34, c = 0.26. 

The differences were sufficiently large for the can- 

didate to accept the offer of job A. 

5.3. Beverage container problem 

Seven types of containers made of glass, bimetallic 
and aluminium cans to be used by the beverage industry 
were evaluated based on four criteria: energy-consump- 

tion, cost, environmental waste and customer conve- 
nience . 

The container types were: 1) refillable glass, no 
recycle (GRNR); 2) refillable glass, recycle (GRR); 
3) throwaway glass, no recycle (GTNR); 4) throwaway 
glass, recycle (GTR); 5) bimetallic can, no recycle 
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Table 4 

Individual A 

Coffee 

Wine 

Tea 

Beer 

Soft drinks 

Milk 

Water 

Individual B, C 

Coffee 

Wine 

Tea 

Beer 

Soft drinks 

Milk 

Water 

Group 

Coffee 

Wine 

Tea 

Beer 

Soft drinks 

Milk 

Water 

1 Coffee Wine Tea Beer Soft drinks Milk Water 

1 5 I 2 

1 
1 

1 
5 

1 t 

(Reciprocals) 

1 

1, 1 971 2, 7 

1, 1 & 2 

1, 1 

(Reciprocals) 

4, 5 

IL 
5’ 5 

335 

1, 1 

3,3 1, 3 

-- :g : A, 1 

173 434 

2, $ $9 1 

1, 1 $9 2 

1, 1 

1 9 5 

1 
1 
5 

1 

(Reciprocals) 

2 3 
1 1 
-i 7 

3 1 
2 

i 1 
z 

1 3 

1 

Table 5 

Actual A B C Average of A, B, C Group 

Coffee 

Wine 

Tea 
Beer 

Soft drinks 
Milk 

Water 

hmax 

0.20 

0.01 
0.04 

0.12 
0.18 

0.14 
0.30 

____ 
0.13 

0.03 
0.02 

0.08 

0.17 

0.15 
0.42 

7.82 

0.19 0.25 0.19 0.22 

0.02 0.04 0.03 0.02 

0.10 0.03 0.05 0.05 

0.07 0.07 0.07 0.06 

0.07 0.18 0.14 0.13 

0.25 0.06 0.15 0.09 

0.30 0.37 0.36 0.42 

7.62 1.77 7.56 



T.L. Saaty /Modeling unstructured decision problems 155 

Table 6 

Overall satisfaction with job 

Research Growth Benefits Colleagues Location Reputation 

Research 1 1 1 4 1 $ 

Growth 1 1 2 4 1 ; 

Benefits 1 1 z 1 5 3 3 

Colleagues i 1 1 7 5 1 5 5 

Location 1 1 1 3 3 1 1 

Reputation 2 2 2 3 3 1 

Table 7 

Research Growth Benefits 

A 

B 

C 

1 i 1 2 A 

4 1 3 B 

2 1 3 1 C 
Colleagues Lot 

A 
i 

B C 
- 

A 

B 

C 

A B C 
- 

1 5 5 A 

3 1 7 B 
1 
5 1 I 1 C 

at 

A B C 

1 3 5 

3 1 1 

3 1 1 
Reputation 

Table 8 

Research Growth Benefits Colleagues Location Reputation 

A = *ax 3.02 3.02 3.56 3.06 3 3.21 

Company A 0.14 0.10 0.32 0.28 0.47 0.77 

Company B 0.63 0.33 0.22 0.65 0.47 0.17 

Company C 0.24 0.57 0.46 0.07 0.07 0.05 

Table 9 

Energy 

cost 

Environmental waste 

Customer convenience 

Energy cost Environmental waste Customer convenience 

1 5 3 9 

1 3 1 : 8 

5 4 1 9 

i 
1 
is 8 1 
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Table 10 

GRNR 

0.31831 

GRR 

0.31831 

T.L. Saaty /Modeling unstructured decision problems 

GTNR GTR BMNR ALNR 

0.09529 0.10303 0.10683 0.02737 

ALR 

0.03086 

Table 11 

GRNR GRR GTNR GTR BMNR ALNR ALR 

0.32 0.30229 0.09335 0.09318 0.08394 0.05224 0.0550 

(BMNR); 6) aluminium can, no recycle (ALNR); 7) 
ahrminium can, recycle (ALR). 

The judgmental matrix of the pairwise comparison 
of the four objective factors is given in table 9. The 
containers were then compared with respect to each 
criterion. The composite weight vector is given in 
table 10. It is interesting to note that the above results 
were consistent when, instead of the judgmental data 
of pairwise comparison, the actual data based on pub- 
lished literature pertaining to energy, cost and environ- 
mental waste were used. The matrices for the fourth 
criterion - customer convenience and the weighting 
matrix of the objective criterion - were taken as in 

the above case. This yielded the priorities of table 11 

by way of validation which is close to the previous 

vector. 
It needs to be pointed out that the quantitative 

factors had minimum and maximum values attached 
to them which served as indicators for the range of 
values of the l-9 scale used together with an idea of 
the strength of utility. In any case, glass containers 
are favored in the analysis corresponding to their 
increased use in practice. 

6. Planning 

fured at the present and defined by the actors or stake- 
holders, their objectives, policies and outcomes arising 
out of these policies. This is the forward planning pro- 
cess (a descriptive process) concerned with the assess- 
ment of the beliefs of the actors as to which is the 
most likely outcome. The other boundary point of 
planning is fixed at the future and defined by the 
desired outcome, the actors who wield the greatest 
influence (or obstacles) in attaining that future, the 
objectives of these actors and specitic policies which a 
given actor may pursue in light of these (other actor) 
objectives to induce changes which lead to the desired 
future. This is the backward planning process (a nor- 
mative process) concerned with the assessment of what 
is the best way to attain a desired outcome. The back- 
ward process is evaluated for each actor separately and 
the new policies for all actors are adjoined to the for- 
ward process to test their effectiveness when all actors 
pursue their objectives simultaneously. The resulting 
forward outcome is determined and compared with 
the desired outcome for each actor. The desired out- 
comes and their corresponding policies are revised and 
the procedure of testing their effectiveness on the for- 
ward planning process is repeated. In this manner the 
forward and backward processes are “aligned” for 
closer results between what is desired by each actor 
and what will be the actual outcome. 

We now turn to a brief verbal description of an The technical details of using the hierarchical 

important use of the method. Regrettably at this point approach to planning have been illustrated in a for- 

our exposition has surpassed the space allocated for ward planning process to estimate the future of higher 

this article. For further detail see [2,6]. education in the U.S. in 1985-2000 [6]. The actors 

Planning is a process concerned with ends and means were students, faculty, administrative, government, 

or outcomes and policies to attain them. It is a two private donors and industry. Each actor has several 

point boundary value process. One boundary point is objectives and the projected outcome is obtained 
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through a weighting process of a number of contrasting 
outcomes. All outcomes are characterized by a set of 
state variables whose values are estimated on a differ- 
ence scale according to how they differ from the pres- 

ent taken as the origin of reference. The corresponding 
values for the variables of the composite (projected) 
outcome are calculated as convex combinations of 

those of the contrasting scenarios using the hierarchical 
approach to first weight the actors impact on higher 
education, then weight (prioritize) the objectives of 
each actor and then prioritize the outcomes as they 
affect the objectives of the actors and finally derive 
the composite weights or impacts of the outcomes on 
the future of higher education. 

The backward planning process has been used to 
design a transport system for the Sudan, an agricul- 
turally rich country that has been singled out as a po- 
tential breadbasket for several hundred million people 
in Africa and the Middle East. Here a composite desired 
future was constructed from a set of contrasting likely 
futures. The impact of the regions of the country on 

this future and the impact of 103 transportation pro- 
jects on their corresponding regions were derived. The 
resulting priorities of the projects were of great value 
for implementation purposes. Social and political fac- 
tors were used along with economics. 

The joint forward-backward planning process has 
been carried out in an application made to resolve the 
conflict in Northern Ireland involving information and 
interaction with parties knowledgeable and involved 
in the conflict. An interesting result of this analysis 
was the emergence of a dominion status rule for North- 
ern Ireland - an outcome that turns out to be the 
most stable - given the parties and their objectives [ 11. 

The limited amount of space allotted to this article 
does not permit us to give details, but we hope that 
the interest of the reader has been adequately stimu- 
lated to pursue the ideas through the references. The 
method of analytical hierarchies offers an effective 
and realistic approach to prioritization, systems plan- 
ning and to conflict resolution. Nearly 30 applications 
of the theory have been made in areas ranging from 
energy and mineral resources to the assessment of 
social and political influence. 

The method has been generalized from hierarchies 
to systems with feedback given in the form of networks. 

7. Conclusion 

There is a considerable interest today in the ques- 
tion as to whose judgments should be used in a plan- 
ning process. It is precisely here that the forward and 
backward processes have proved to be of immense 
value both in the presence and absence of participation. 

In the forward process we include the judgment of 
each actor as it relates to his areas of expertise and 
thus obtain a composite outcome which reflects the 
judgments of all the actors. If the actors wish to coop- 
erate and justify their judgments to each other through 
debate and consensus one can use their collective judg- 
ment across all levels of the hierarchy; but as we have 
just said, this is not essential. 

In the backward process we use the desired prefer- 
ences of each actor individually. The iterative process 
should serve to educate the actors as to the effective- 
ness of their policies without due consideration to 
other actor influences since the outcome is a resultant 

of these influences. 
Finally, there are cases where unless one were to 

give all the actors equal weights (which is rarely justi- 
fied-in practice) it is essential to establish relevant (ob- 
jective) criteria for this weighting. For example, their 
years of experience, degree of success measured in 
terms of concrete accomplishments or, in general, what- 
ever the actors may agree (or disagree) on as grounds 
which serve to show their relative strengths can be used 
for this purpose. 

Sometimes it may be desired to analyze a problem 
completely from the standpoint of each actor. In that 
case, the outcomes could be synthesized by using an 
appropriate weighting of the actors to obtain a resul- 
tant outcome. The method of analytical hierarchies 
has also served very well in facing these questions. In 
a second forthcoming paper we propose to develop 
several of the foregoing ideas with additional illustra- 
tions. 
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