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MODELING UNSTRUCTURED DECISION PROBLEMS — THE THEORY OF ANALYTICAL

HIERARCHIES

Thomas L. SAATY

The Wharton School, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Quantitative modeling of unstructured decision problems with social implications is new and challenging and has
pressing needs. A new approach to scaling using largest eigenvalues and reciprocal matrices and the effect of inconsistent
judgment are introduced and relevant theory discussed. In this approach inconsistency is accepted as a fact but measured
to determine how bad it is. Since most decision problems are hierarchical in form as they fulfill higher and still higher objec-
tives, the appropriate structure for representation is a hierarchy. A new formal definition of a hierarchy is given and the
notion of measurement with eigenvalues is extended to hierarchies. Both the eigenvalue approach to measurement and the
hierarchical approach are illustrated with examples. Finally, unstructured problems are illustrated through applications of
forward-backward planning, a two-point boundary value problem.

1. Introduction

Decision making is a practice we all engage in all
the time. All human undertakings require initiative
and action to choose one of several alternatives. Thus
decision theory rather than being a theoretical con-
cern must be a practical pursuit which shapes our think-
ing about choices and is influenced by our intuition
and judgment as to how we like to make our choices.
Some decision theory has been normative without
regard to human preferences. Here we turn the sub-
ject around and look at it as a natural human preoccu-
pation, formalize it and advocate its usage through
participation.

Since the behavioral sciences have no laws or invari-
ants one can usually produce a counter example to
every seemingly good hypothesis. For any modeling
to be useful in this field it cannot be of the universal
kind one is accustomed to in the natural sciences. It
must attempt to describe or solve today’s problems
with the people who have these problems. Thus,
because of the lack of invariants, one can only describe
the present happenings by cooperation with the people
themselves and using their own judgments and inter-
pretations guiding the model towards a satisfactory
answer. Therefore useful modeling must be interactive
and must include subjectivity arising out of the con-
cerned party’s experience rather than dictated by the
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modeler, who may reflect complete ignorance of the
occurrences.

Decision theory is concerned with making an opti-
mal choice among alternative outcomes. In order that
the choice be rational, a way of making tradeoffs
among the alternatives according to their various attri-
butes must be known.

Decision problems can be represented as in fig. 1.
The structured and semi-structured parts of the figure
are rather well understood. Most complex real-life
problems are unstructured and the task is to estimate
both the possible outcomes and their corresponding
probabilities. In order to decrease the guesswork in
estimating alternative outcomes, a set of extreme out-
comes or scenarios is first identified and a most likely
one is computed as a weighted combination of these
outcomes. Hierarchical analysis is a technique used to
estimate the weights of the possible outcomes. This
forward planning process is sharpened by adjoining to
its policies those estimated to be effective in attaining
known desired outcomes from the backward process.

Our first problem then is to identify alternative
(forward) outcomes, together with the actors who by
pursuing their objectives and policies (independently
or through cooperation) attempt to bring about the
likely outcomes. As a result of this interaction we ask
“What is the outcome likely to emerge and what kind
of measurement do we use to estimate this outcome?”
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Fig. 1.

Our next problem is to identify a desired outcome
for each of the actors and assist them to modify their
objectives and allocate their effort to wield the neces-
sary influence to overcome problems or utilize oppor-
tunities to attain their desired outcome. These objec-
tives are adjoined to the forward process to test their
effect on modifying the likely outcome more closely

with the desired one. The process is repeated by modify-

ing both the desired outcome and the change in objec-
tives to attain that outcome.

2. Reciprocal matrices and ratio scale estimates

Assume that we are given n stones, 4, ..., Ap,
whose weights w,, ..., w,, respectively, are known to
us. Let us form the matrix of pairwise ratios whose
rows give the ratios of the weights of each stone with
respect to all others. Thus we have the matrix A of
table 1. We have multiplied 4 on the right by the vec-
tor of weights w. The result of this multiplication is

nw. Thus, to recover the scale from the matrix of ratios

we must solve the problem Aw=nwor @ —nH)w=0.

This is a system of homogeneous linear equations, It
has a nontrivial solution if and only if the determinant
of (4 — nl) vanishes, i.e., n is an eigenvalue of 4. Now
A has unit rank since every row is a constant multiple
of the first row. Thus all its eigenvalues except one

are zero. The sum of the eigenvalues of a matrix is
equal to its trace and in this case, the trace of 4 is
equal to n. Thus # is an eigenvalue of A and we have

a nontrivial solution. The solution consists of positive

Table 1
The matrix 4
LAI Ay... A4,
wy w w -
Al ———l-——l-.—l— wi wﬂ
wy wa Wn
A w2 Wi w2
— Lt =L wa W
A=T2 5% Wy Ty | 2=
Wn Wp Wy
Ay | — —...— |wy Lw,,J
w1 w3 Wn
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entries and is unique to within a multiplicative con-
stant (by the Perron—Frobenius theorem since 4 is
irreducible, i.e., it is not decomposable into blocks of
the form:

c, 0
A=( )
C; C3

To make w unique we normalize its entries by dividing
by their sum. Thus given the comparison matrix we
can recover the scale. In this case the solution is any
column of 4 normalized. Note that in 4 we have g;; =
1/a;; the reciprocal property. Thus, also, a;; = 1. Also,
A is consistent, i.e., its entries satisfy the condition

ajk = ajxlay; -

Thus the entire matrix can be constructed from a set
of n elements which form a chain across the rows and
columns.

In the general case we cannot give the precise values
of w;/w; but estimates of them. For the moment let
us consider an estimate of these values by an expert
who we assume makes small errors in judgment. From
matrix theory we know that small perturbation of the
coefficients implies small perturbation of the eigen-
values. Our problem now becomes A'w' = Apax W
where A,y is the largest eigenvalue of A’. To simplify
the notation we shall continue to write Aw = A W
where A is the matrix of pairwise comparisons. The
problem now is how good is the estimate w. Note that
if we obtain w by solving this problem the matrix
whose entries are w;/w; is a consistent matrix which is
our consistent estimate of the matrix 4. 4 itself need
not be consistent. In fact, the entries of A need not
even be ordinally consistent, i.e., 4; may be preferred
to A,, A, to 43, but A5 is preferred to 4 ;. What we
would like is a measure of the error due to inconsis-
tency. It turns out that A4 is consistent if and only if
Amax = # and that we always have A, = #. This sug-
gests using A . — 7 as an index of departure from
consistency. But

n

)\max_n:_E >\ia
i=1

kl’l’l?l)( = )\1 >

where A;,7 =1, ..., n, are the eigenvalues of 4. We
adopt the average value (A, — n)/(n — 1) which is
the (negative) average of A;, i = 2, ..., n (some of which
may be complex conjugates!). On calculating this

value we compare the result with those of the same
index obtained as an average over a large number of
matrices of the same order whose entries are random.
However, we preserve the relations a;; = 1/a;;, a;; = 1
in these matrices to improve consistency. The reason
for this is that if one stone is estimated to be k times
heavier than another, it does not seem unreasonable
to require that the second stone be estimated to be
1/k times the weight of the first. If the ratio of our
index to that from random matrices is significantly
small, we accept the estimates. Otherwise, we attempt
to improve consistency by obtaining additional infor-
mation. We shall not go into the details of this proce-
dure.

It is interesting to note that 2(A\ax — 7)1 — 1) is
the variance of the error incurred in estimating a;;.
This can be shown by writing:

a;j = (Wi/wj) €55, €; >0
and
eij:1+6ij’ 61]>_1

It is 6,7 that concerns us as the error component and
its value for an unbiased estimator, i.e., 16,1 <1.

What would be desirable is to obtain the density
function of A\ pmax — 2)/(n — 1).

To conclude this section, we note that solution of
the largest eigenvalue problem when normalized gives
us a unique estimate of an underlying ratio scale.

Before we go on to discussion of what numerical
values we might use in making comparisons we need
to discuss the problem of the size of a matrix.

We note that (n? — 1)/2 judgments or estimates are
necessary to fill a matrix. The question is whether this
can be done with fewer estimates still obtaining a good
answer.

We note that in making the estimates and to keep
the comparisons relevant an individual has to keep in
mind all the elements being compared. It is known that
an individual cannot simultaneously compare more
than 7 = 2 elements. If this is so, then how is it that
we have measurement across wide classes of objects.
The answer to this is by hierarchical decomposition.
The elements are grouped ordinally (as a first estimate)
into comparability classes of about seven elements
each. The element with the highest weight in the class
of lighter weight elements is also included in the next
heavier class and serves as a pivot to uniformize the
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scale between the two classes. The procedure is
repeated from a class to an adjacent one until we have
all the elements appropriately scaled [3,4].

In passing, we note that the eigenvector approach
to measurement (as one might expect) preserves ordi-
nal preferences among the alternatives, i.e., if an alter-
native is preferred to another, its eigenvector compo-
nent is larger than that of the other. This theorem is
also true in the general hierarchical use of eigenvalues
which we discuss next.

3. What is a hierarchy

Hierarchies play an important role in studying the
impact of alternatives on the goals and objectives of a
system. Usually the objectives are satisfied in different
levels according to their generality and degree of impor-
tance. By imbedding a problem in hierarchical form,
one has to identify all the important factors and the
levels to which they belong and measure the interaction
between levels. Finally, a principle of hierarchical com-
position is used to measure the impact of the factors in

the lowest level on the highest objective of the hierarchy.

There are several kinds of hierarchies, the simplest
of which are dominance hierarchies which descend like
an inverted tree with the boss at the top, followed by
successive levels of bossing. Another kind are holarchies
which are essentially dominance hierarchies with feed-
back. Chinese box (or modular) hierarchies grow in
size from the simplest elements or components (the
inner boxes) to larger and larger aggregates (the outer
boxes). In biology, neogenetic hierarchies are of inter-
est because they have successive newly emerging top
levels through evolution. We shall concentrate our
attention on dominance hierarchies, although the
theory described below is being generalized to the
other hierarchical forms.

There are many ways of defining a hierarchy. The
one which suits our needs best here is the following:
In an ordered set, we define x <y to mean that x <y
and x #y. y is said to cover (dominate) x if x <y
and if x <t <y is possible for no z. We used the nota-
tionx~ = {yIx covers y} and x* = {y |y covers x}, for
any element x in an ordered set.

Definition. Let H be a finite partially ordered set. H is
a hierarchy if it satisfies the conditions:

a) There is a partition of Hintosets Ly, k =1, ..., h
where L = {b}, b a single element.

b)x €L, impliesx™ CLy,q,k=1,...,h — 1.

¢)x €Ly impliesx" CLx_;,k=2,.., A

For each x € H, there is a suitable weighting func-
tion (whose nature depends on the phenomenon being
hierachically structured):

wy 1 x7 [0, 1] such that 2 w,()=1.
yex

The sets L; are the levels of the hierarchy, and the
function w, is the priority function of the elements
in one level with respect to the objective x. We observe
that even if x ™ # L (for some level L), w, may be
defined for all of L), by setting it equal to zero for all
elementsin Ly notinx™.

The weighting function, we feel, is a significant
contribution towards the application of hierarchy
theory.

Definition. A hierarchy is complete if, for all x € Ly,
x"=Li_q,fork=2, .., h

We can state the central question:

Basic problem. Given any element x € L, and sub-
set S € Lg, (a <), how do we define a function wy g :
§— [0, 1] which reflects the properties of the priority
functions w), on the levels Ly, k = a, ..., § — 1. Specif-
ically, what is the function wy, 1, : Ly, = [0, 1]?

In less technical terms, this can be paraphrased thus:
Given a social (or economic) system with a major ob-
jective b, and the set Ly, of basic activities, such that
the system can be modelled as a hierarchy with largest
element b and lowest level L;. What are the priorities
of the elements of L;, with respect to ?

From the standpoint of optimization, to allocate
a resource among the elements any interdependence
must also be considered. Analytically, interdependence
may take the form of input-output relations such as,
for example, the interflow of products between indus-
tries. A high priority industry may depend on flow of
material from a low priority industry. In an optimiza-
tion framework, the priority of the elements enables
one to define the objective function to be maximized,
and other hierarchies supply information regarding
constraints, e.g., input-output relations.

We shall now present our method to solve the basic
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problem. Assume that ¥ = {yy, ..., ym,} € Ly and that
X={xq, ...,xmkﬂ} € L+, . Without loss of generality
we may assume that X = L., and that there is an
element z € L such that y C z~, We then consider the
priority functions

w, : Y->10,1]
and
wy X > [0, 1], i=1, .., n.

We construct the “priority function of the elements
in X with respect to z,”” denoted w, w : X - [0, 1], by

ng
wix;) = 21 Wy D) Wz () , 1= 1, e, Mgy
]:

It is obvious that this is no more than the process of
weighting the influence of the element y; on the prior-
ity of x; by multiplying it with the importance of x;
with respect to z.

The algorithms involved will be simplified if one
combines the wy, (x;) into a matrix B by setting b;; =
wy . (x;). If we further set w; = w(x;) and w; = w,(y)),
then the above formula becomes

ny
— ! y —
Wi—E bi]'Wj, 1= 1,..., Rpyy-
j=1

Thus, we may speak of the priority vector w and,
indeed, of the priority matrix B of the (k + 1)st level;
this gives the final formulation

w=Bw'.

The following is easy to prove:

Theorem. Let H be a complete hierarchy with largest
element b and h levels. Let By, be the priority matrix
of the kth level, k = 1, ..., h. If w' is the priority vec-

tor of the pth level with respect to some element z in
the (p — 1)st level, then the priority vector w of the

qth level (p < g ) with respect to z is given by

w= Bqu—l Bp+1W,.

Thus, the priority vector of the lowest level with
respect to the element b is given by:

w :BhBh——l B2bl'

If L has a single element, b; = 1. Otherwise, b is a
prescribed vector.

The following observation holds for a complete
hierarchy but it is also useful in general. The priority
of an element in a level is the sum of its priorities in
each of the comparison subsets to which it belongs;
each weighted by the fraction of elements of the level
which belong to that subset and by the priority of that
subset. The resulting set of priorities of the elements
in the level is then normalized by dividing by its sum.
The priority of a subset in a level is equal to the prior-
ity of the dominating element in the next level.

4. The scale

The scale we recommend for use which has been
successfully tested and compared with other scales
will now be discussed.

The judgments elicited from people are taken qual-
itatively and corresponding scale values assigned to
them. In general, we do not expect the judgments to
be consistent.

Our choice of scale hinges on the following obser-
vation. Roughly, the scale should satisfy the require-
ments:

1) It should be possible to represent people’s differ-
ences in feelings when they make comparisons. It
should represent as much as possible all distinct
shades of feeling that people have.

2) If we denote the scale values by x1, X3, ..., Xp, then
letxiﬂ —X; = l, s D — 1.

Since we require that the subject must be aware of
all gradations at the same time, and we agree with the
psychological experiments [3] which show that an
individual cannot simultaneously compare more than
seven objects (plus or minus two) without being con-
fused, we are led to choose ap = 7 + 2. Using a unit
difference between successive scale values is all that
we allow, and using the fact that x, = 1 for the iden-
tity comparison, it follows that the scale values will
range from one to nine.

As a preliminary step towards the construction of
an intensity scale of importance for activities, we have
broken down the importance ranks as shown in the
scale of table 2. In using this scale the reader should
recall that we assume that the individual providing the
judgment has knowledge about the relative values of
the elements being compared whose ratio is = 1 and
that the numerical ratios he forms are nearest integer
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Table 2
The scale and its description
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Intensity of importance Definition

13 Equal importance

3 Weak importance of one over
another

5 Essential or strong importance

7 Demonstrated importance

9 Absolute importance

2,4,6,8 Intermediate values between the

Reciprocals of above

Explanation

two adjacent judgments

If activity i has one of the above

non-zero non-zero numbers assigned to it
when compared with activity 7, then
J has the reciprocal value when com-
pared with {

Rationals Ratios arising from the scale

Two activities contribute equally to the
objective

Experience and judgment slightly favor one
activity over another

Experience and judgment strongly favor one
activity over another

An activity is strongly favored and its dom#
nance demonstrated in practice

The evidence favoring one activity over another
is of the highest possible order of affirmation

When compromise is needed

If consistency were to be forced by obtaining

n numerical values to span the matrix

) On occasion in 2 by 2 problems, we have used 1 +¢,0< e < % to indicate very slight dominance between two nearly equal

activities.

approximations scaled in such a way that the highest
ratio corresponds to nine.

At first glance one would like to have a scale extend
as far out as possible. On second thought we discover
that to give an idea how large measurement can get,
scales must be finite. We also note that one does not
measure widely disparate objects by the same yardstick.
Short distances on a piece of paper are measured in
centimeters, longer distances in a neighborhood in
meters, and still larger ones in kilometers and even in
light years. To make comparisons of the sizes of atoms
with those of stars, people, in a natural fashion, insert
between these extremes, objects which gradually grow
larger and larger enabling one to discriminate in the
process of transition among the orders of magnitude
of measurement. To make such distinction possible
the objects put in each group are within the range of
the scale and the largest object in one group is used as
the smallest one in the next larger group. Its scale val-
ues in the two groups enable one to continue the mea-
surement from one group to the next and so on. In

practice, one way or another, the numerical judgments
will have to be approximations, but how good is the
question at which our theory is aimed.

A typical question to ask in order to fill in the
entries in a matrix of comparisons is: Consider two
properties i on the left side of the matrix and another
J on the top; which of the two has the property under
discussion more, and how strongly more (using the
scale values 1 to 9)? This gives us a;;. The reciprocal
value is then automatically entered for a;;.

Yet there is no satisfactory statistical theory that
would assist us in deciding how well judgmental data
correspond to reality. We have occasionally used the
root mean square deviation (RMS) and the median
absolute deviation about the median (MAD). These
indicators are probably more useful when making
inter-scale or inter-personal comparisons in judgments
than as absolute measures of the goodness of fit. We
have not found the Chi-square test useful. It is clear
that this is an area of research that is worth pursuing.

Considerable effort has been concentrated on com-
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paring the scale 1 to 9 with 25 other scales suggested
to us by a number of people. Space limitation prevents
us from showing that this scale and small perturbations
of it are better than practically all others. We used five
different problems for which the real answers were
later determined and the root mean square deviation
and the median absolute deviation about the median
were used for comparison of goodness of fit of the
resulting eigenvector.

5. Examples

An interesting example illustrating the fact that
eigenvectors give the correct results in the field of prob-
ability, consider an urn with balls of three colors: two
black, one white and three red. The probabilities of
drawing a ball of one of these colors are, respectively,
g

The pairwise comparison matrix giving the ratios
of the number of balls of indicated colors is given in
table 3. Since this matrix is consistent, the entries of
any column after normalizing gives the ratio of balls
of each color to the total. We have, for example, from
the first column, %, é, % which, as to be expected,
corresponds to the probabilities that a ball drawn at
random has one of the three colors. If the urn has a
large number of balls whose relative quantities can be
compared, this approach would give an estimate of the
relative magnitude of each kind.

5.1. The consumption of drinks in the United States

Three individuals were asked to compare seven
drinks consumed extensively in the United States with
the idea that their estimates first done individually
and then collectively of the dominance of consump-
tion may give a close idea of the actual percentages
among the seven drinks. The matrices are given in
table 4. The actual percentages of drinks consumed,

Table 3
B w R
2
B 1 2 2
w i 1 i
3
R 3 3 1

eigenvectors and eigenvalues are given in table 5.

It should be emphasized that the individuals did
not have access to the actual consumption figures un-
til after the completion of the exercise. In all cases
the closeness of the results was impressive and the con-
sistency not bad.

It is interesting to note that a group may not do
better than an individual if some of them are more
articulate than others and in addition have strong
biases. It is best that they be allowed to speak briefly
without forcing the vote their way. Generally, people
should be encouraged to stick to their feelings unless
they get a convincing and overriding reason from the
others to change their beliefs. An average is probably
better than a group decision under “no holds barred”
type of coercion. On the other hand, fair democratic
kind of interaction has often led to excellent results
better than what individuals could do.

5.2. Choosing a job

A student who had just received his Ph.D. was inter-
viewed for three jobs. His criteria for selecting the jobs
and their pairwise comparison matrix are given in
table 6.

The pairwise comparison matrices of the jobs with
respect to each criterion are given in table 7. The eigen-
value and eigenvector of the first matrix are, respec-
tively: Apax = 6.35;0.16,0.19, 0.19, 0.05, 0.12, 0.30.

The remaining eigenvalues and eigenvectors are
given in table 8. The composite vector for the jobs is
given by:

A =040, B=0.34, C=0.26.

The differences were sufficiently large for the can-
didate to accept the offer of job A.

5.3. Beverage container problem

Seven types of containers made of glass, bimetallic
and aluminium cans to be used by the beverage industry

‘were evaluated based on four criteria: energy-consump-

tion, cost, environmental waste and customer conve-
nience.

The container types were: 1) refillable glass, no
recycle (GRNR); 2) refillable glass, recycle (GRR);
3) throwaway glass, no recycle (GTNR); 4) throwaway
glass, recycle (GTR); 5) bimetallic can, no recycle
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Table 4
Individual A
Coffee Wine Tea Beer Soft drinks Milk Water
Coffee 1 5 7 2 1 2 1
3 7
: 1 1 1 1
1 1 1 L
Tea 1 6 5 6 9
1 1 1
Beer 1 2 3 T
Soft drinks (Reciprocals) 1 '12‘ 21;‘
Milk 1 3
Water 1
Individual B, C
Coffee 1,1 9,7 2,7 4,5 3,3 1,3 13
. 1 11 11 1 11
Wine 1,1 82 53 75 81 77
1 1 11 11
Tea 11 3,3 L3 %72 37
1 1 11
Beer 1,1 2,3 51 T
Soft drinks (Reciprocals) 1,1 ) i1
Milk 1,1 19
Water 1,1
Group
Coffee 1 9 5 4 2 3 3
: 1 1 1 1 1
Wine 1 5 5 7 7 9
1 1 1 1
Tea 1 3 3 2 7
1 1 1
Beer 1 3 3 5
Soft drinks (Reciprocals) 1 3 H
Milk 1 %
Water 1
Table §
Actual A B C Average of A, B, C Group
Coffee 0.20 0.13 0.19 0.25 0.19 0.22
Wine 0.01 0.03 0.02 0.04 0.03 0.02
Tea 0.04 0.02 0.10 0.03 0.05 0.05
Beer 0.12 0.08 0.07 0.07 0.07 0.06
Soft drinks 0.18 0.17 0.07 0.18 0.14 0.13
Milk 0.14 0.15 0.25 0.06 0.15 0.09
Water 0.30 0.42 0.30 0.37 0.36 0.42
Amax 7.82 7.62 1.17 7.56
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Table 6
Overall satisfaction with job
Research Growth Benefits Colleagues Location Reputation

Research 1 1 1 4 1 :
Growth 1 1 2 4 1 :
Benefits 1 : 1 5 3 3
Colleagues %,, % —é— 1 % 31;
Location 1 1 % 3 1 1
Reputation 2 2 2 3 3 1
Table 7
Research Growth Benefits

A B C A B C A B C

N A ! Lo
B 4 1 3 B 4 1 3 B 3 1 1
C 2 ! 1 5 2 1 c 3 1 1

Colleagues Location Reputation

A B C A B C A B C
A 1 i A 1 1 1 7 9
B 3 1 7 B 1 1 7 B L 1

1 1 1 1 1 1
C 5 5 1 C 57 5 1 C 9 H 1
Table 8

Research Growth Benefits Colleagues Location Reputation
Amax = 3.02 3.02 3.56 3.06 3 3.21
Company A 0.14 0.10 0.32 0.28 0.47 0.77
Company B 0.63 0.33 0.22 0.65 0.47 0.17
Company C 0.24 0.57 0.46 0.07 0.07 0.05
Table 9
Energy Cost Environmental waste Customer convenience

Energy 1 5 3 9
Cost % 1 _i_ 8
Environmental waste % 4 1 9
Customer convenience é % % 1
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Table 10

GRNR GRR GTNR GTR BMNR ALNR ALR
0.31831 0.31831 0.09529 0.10303 0.10683 0.02737 0.03086
Table 11

GRNR GRR GTNR GTR BMNR ALNR ALR
0.32 0.30229 0.09335 0.09318 0.0839%4 0.05224 0.0550

(BMNR); 6) aluminium can, no recycle (ALNR); 7)
aluminium can, recycle (ALR).

The judgmental matrix of the pairwise comparison
of the four objective factors is given in table 9. The
containers were then compared with respect to each
criterion. The composite weight vector is given in
table 10. It is interesting to note that the above results
were consistent when, instead of the judgmental data
of pairwise comparison, the actual data based on pub-
lished literature pertaining to energy, cost and environ-
mental waste were used. The matrices for the fourth
criterion — customer convenience and the weighting
matrix of the objective criterion — were taken as in
the above case. This yielded the priorities of table 11
by way of validation which is close to the previous
vector.

It needs to be pointed out that the quantitative
factors had minimum and maximum values attached
to them which served as indicators for the range of
values of the 1—9 scale used together with an idea of
the strength of utility. In any case, glass containers
are favored in the analysis corresponding to their
increased use in practice.

6. Planning

We now turn to a brief verbal description of an
important use of the method. Regrettably at this point
our exposition has surpassed the space allocated for
this article. For further detail see [2,6].

Planning is a process concerned with ends and means
or outcomes and policies to attain them. It is a two
point boundary value process. One boundary point is

fixed at the present and defined by the actors or stake-
holders, their objectives, policies and outcomes arising
out of these policies. This is the forward planning pro-
cess (a descriptive process) concerned with the assess-
ment of the beliefs of the actors as to which is the
most likely outcome. The other boundary point of
planning is fixed at the future and defined by the
desired outcome, the actors who wield the greatest
influence (or obstacles) in attaining that future, the
objectives of these actors and specific policies which a
given actor may pursue in light of these (other actor)
objectives to induce changes which lead to the desired
future. This is the backward planning process (a nor-
mative process) concerned with the assessment of what
is the best way to attain a desired outcome. The back-
ward process is evaluated for each actor separately and
the new policies for all actors are adjoined to the for-
ward process to test their effectiveness when all actors
pursue their objectives simultaneously. The resulting
forward outcome is determined and compared with
the desired outcome for each actor. The desired out-
comes and their corresponding policies are revised and
the procedure of testing their effectiveness on the for-
ward planning process is repeated. In this manner the
forward and backward processes are “aligned” for
closer results between what is desired by each actor
and what will be the actual outcome.

The technical details of using the hierarchical
approach to planning have been illustrated in a for-
ward planning process to estimate the future of higher
education in the U.S. in 1985—2000 [6]. The actors
were students, faculty, administrative, government,
private donors and industry. Each actor has several
objectives and the projected outcome is obtained
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through a weighting process of a number of contrasting
outcomes. All outcomes are characterized by a set of
state variables whose values are estimated on a differ-
ence scale according to how they differ from the pres-
ent taken as the origin of reference. The corresponding
values for the variables of the composite (projected)
outcome are calculated as convex combinations of
those of the contrasting scenarios using the hierarchical
approach to first weight the actors impact on higher
education, then weight (prioritize) the objectives of
each actor and then prioritize the outcomes as they
affect the objectives of the actors and finally derive

the composite weights or impacts of the outcomes on
the future of higher education.

The backward planning process has been used to
design a transport system for the Sudan, an agricul-
turally rich country that has been singled out as a po-
tential breadbasket for several hundred million people
in Africa and the Middle East. Here a composite desired
future was constructed from a set of contrasting likely
futures. The impact of the regions of the country on
this future and the impact of 103 transportation pro-
jects on their corresponding regions were derived. The
resulting priorities of the projects were of great value
for implementation purposes. Social and political fac-
tors were used along with economics.

The joint forward-backward planning process has
been carried out in an application made to resolve the
conflict in Northern Ireland involving information and
interaction with parties knowledgeable and involved
in the conflict. An interesting result of this analysis
was the emergence of a dominion status rule for North-
ern Ireland — an outcome that turns out to be the
most stable — given the parties and their objectives [1].

The limited amount of space allotted to this article
does not permit us to give details, but we hope that
the interest of the reader has been adequately stimu-
lated to pursue the ideas through the references. The
method of analytical hierarchies offers an effective
and realistic approach to prioritization, systems plan-
ning and to conflict resolution. Nearly 30 applications
of the theory have been made in areas ranging from
energy and mineral resources to the assessment of
social and political influence.

The method has been generalized from hierarchies

to systems with feedback given in the form of networks.

7. Conclusion

There is a considerable interest today in the ques-
tion as to whose judgments should be used in a plan-
ning process. It is precisely here that the forward and
backward processes have proved to be of immense
value both in the presence and absence of participation.
In the forward process we include the judgment of
each actor as it relates to his areas of expertise and
thus obtain a composite outcome which reflects the
judgments of all the actors. If the actors wish to coop-
erate and justify their judgments to each other through
debate and consensus one can use their collective judg-
ment across all levels of the hierarchy; but as we have
just said, this is not essential.

In the backward process we use the desired prefer-
ences of each actor individually. The iterative process
should serve to educate the actors as to the effective-
ness of their policies without due consideration to
other actor influences since the outcome is a resultant
of these influences.

Finally, there are cases where unless one were to
give all the actors equal weights (which is rarely justi-
fied.in practice) it is essential to establish relevant (ob-
jective) criteria for this weighting. For example, their
years of experience, degree of success measured in
terms of concrete accomplishments or, in general, what-
ever the actors may agree (or disagree) on as grounds
which serve to show their relative strengths can be used
for this purpose.

Sometimes it may be desired to analyze a problem
completely from the standpoint of each actor. In that
case, the outcomes could be synthesized by using an
appropriate weighting of the actors to obtain a resul-
tant outcome. The method of analytical hierarchies
has also served very well in facing these questions. In
a second forthcoming paper we propose to develop
several of the foregoing ideas with additional illustra-
tions.
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